1 code implementation • 18 Mar 2025 • Thomas Kwa, Ben West, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin, Sami Jawhar, Megan Kinniment, Nate Rush, Sydney von Arx, Ryan Bloom, Thomas Broadley, Haoxing Du, Brian Goodrich, Nikola Jurkovic, Luke Harold Miles, Seraphina Nix, Tao Lin, Neev Parikh, David Rein, Lucas Jun Koba Sato, Hjalmar Wijk, Daniel M. Ziegler, Elizabeth Barnes, Lawrence Chan
Despite rapid progress on AI benchmarks, the real-world meaning of benchmark performance remains unclear.
2 code implementations • 22 Nov 2024 • Hjalmar Wijk, Tao Lin, Joel Becker, Sami Jawhar, Neev Parikh, Thomas Broadley, Lawrence Chan, Michael Chen, Josh Clymer, Jai Dhyani, Elena Ericheva, Katharyn Garcia, Brian Goodrich, Nikola Jurkovic, Megan Kinniment, Aron Lajko, Seraphina Nix, Lucas Sato, William Saunders, Maksym Taran, Ben West, Elizabeth Barnes
We confirm that our experts make progress in the environments given 8 hours, with 82% of expert attempts achieving a non-zero score and 24% matching or exceeding our strong reference solutions.
1 code implementation • NeurIPS 2021 • Cameron Allen, Neev Parikh, Omer Gottesman, George Konidaris
A fundamental assumption of reinforcement learning in Markov decision processes (MDPs) is that the relevant decision process is, in fact, Markov.
no code implementations • 5 Feb 2020 • Kavosh Asadi, Neev Parikh, Ronald E. Parr, George D. Konidaris, Michael L. Littman
We show that the maximum action-value with respect to a deep RBVF can be approximated easily and accurately.