no code implementations • 20 Sep 2023 • Siqing Huo, Negar Arabzadeh, Charles L. A. Clarke
After presenting a question to an LLM and receiving a generated answer, we query the corpus with the combination of the question + generated answer.
Generative Question Answering
Open-Domain Question Answering
+1
no code implementations • 23 Jun 2023 • Siqing Huo, Negar Arabzadeh, Charles L. A. Clarke
After presenting a question to an LLM and receiving a generated answer, we query the corpus with the combination of the question + generated answer.
1 code implementation • 18 May 2023 • Chuan Meng, Negar Arabzadeh, Mohammad Aliannejadi, Maarten de Rijke
The QPP task is to predict the retrieval quality of a search system for a query without relevance judgments.
2 code implementations • 18 May 2023 • Shrestha Mohanty, Negar Arabzadeh, Julia Kiseleva, Artem Zholus, Milagro Teruel, Ahmed Awadallah, Yuxuan Sun, Kavya Srinet, Arthur Szlam
Human intelligence's adaptability is remarkable, allowing us to adjust to new tasks and multi-modal environments swiftly.
2 code implementations • 12 Nov 2022 • Shrestha Mohanty, Negar Arabzadeh, Milagro Teruel, Yuxuan Sun, Artem Zholus, Alexey Skrynnik, Mikhail Burtsev, Kavya Srinet, Aleksandr Panov, Arthur Szlam, Marc-Alexandre Côté, Julia Kiseleva
Human intelligence can remarkably adapt quickly to new tasks and environments.
1 code implementation • 1 Nov 2022 • Alexey Skrynnik, Zoya Volovikova, Marc-Alexandre Côté, Anton Voronov, Artem Zholus, Negar Arabzadeh, Shrestha Mohanty, Milagro Teruel, Ahmed Awadallah, Aleksandr Panov, Mikhail Burtsev, Julia Kiseleva
The adoption of pre-trained language models to generate action plans for embodied agents is a promising research strategy.
no code implementations • 9 Aug 2022 • Dahlia Shehata, Negar Arabzadeh, Charles L. A. Clarke
In this work, we propose boosting the performance of sparse retrievers by expanding both the queries and the documents with linked entities in two formats for the entity names: 1) explicit and 2) hashed.
no code implementations • 9 Aug 2022 • Negar Arabzadeh, Mahsa Seifikar, Charles L. A. Clarke
While the research community has paid substantial attention to the problem of predicting query ambiguity in traditional search contexts, researchers have paid relatively little attention to predicting when this ambiguity is sufficient to warrant clarification in the context of conversational systems.
1 code implementation • 27 May 2022 • Julia Kiseleva, Alexey Skrynnik, Artem Zholus, Shrestha Mohanty, Negar Arabzadeh, Marc-Alexandre Côté, Mohammad Aliannejadi, Milagro Teruel, Ziming Li, Mikhail Burtsev, Maartje ter Hoeve, Zoya Volovikova, Aleksandr Panov, Yuxuan Sun, Kavya Srinet, Arthur Szlam, Ahmed Awadallah
Starting from a very young age, humans acquire new skills and learn how to solve new tasks either by imitating the behavior of others or by following provided natural language instructions.
1 code implementation • 5 May 2022 • Negar Arabzadeh, Ali Ahmadvand, Julia Kiseleva, Yang Liu, Ahmed Hassan Awadallah, Ming Zhong, Milad Shokouhi
The recent increase in the volume of online meetings necessitates automated tools for managing and organizing the material, especially when an attendee has missed the discussion and needs assistance in quickly exploring it.
no code implementations • 2 May 2022 • Ali Ahmadvand, Negar Arabzadeh, Julia Kiseleva, Patricio Figueroa Sanz, Xin Deng, Sujay Jauhar, Michael Gamon, Eugene Agichtein, Ned Friend, Aniruddha
Current interactive systems with natural language interfaces lack the ability to understand a complex information-seeking request which expresses several implicit constraints at once, and there is no prior information about user preferences e. g.,"find hiking trails around San Francisco which are accessible with toddlers and have beautiful scenery in summer", where output is a list of possible suggestions for users to start their exploration.
no code implementations • 22 Sep 2021 • Negar Arabzadeh, Xinyi Yan, Charles L. A. Clarke
These hybrid retrievers leverage low-cost, exact-matching based sparse retrievers along with dense retrievers to bridge the semantic gaps between query and documents.
1 code implementation • 31 Aug 2021 • Negar Arabzadeh, Alexandra Vtyurina, Xinyi Yan, Charles L. A. Clarke
To test this observation, we employed crowdsourced workers to make preference judgments between the top item returned by a modern neural ranking stack and a judged relevant item.