no code implementations • 17 Nov 2022 • Nicholas A. Roy, Junkyung Kim, Neil Rabinowitz
We take a pragmatic view of the issue, and define a set of desiderata that capture both the ambitions of XAI and the practical constraints of deep learning.
1 code implementation • 4 Feb 2021 • Jane X. Wang, Michael King, Nicolas Porcel, Zeb Kurth-Nelson, Tina Zhu, Charlie Deck, Peter Choy, Mary Cassin, Malcolm Reynolds, Francis Song, Gavin Buttimore, David P. Reichert, Neil Rabinowitz, Loic Matthey, Demis Hassabis, Alexander Lerchner, Matthew Botvinick
There has been rapidly growing interest in meta-learning as a method for increasing the flexibility and sample efficiency of reinforcement learning.
1 code implementation • ICLR 2020 • Tom Le Paine, Caglar Gulcehre, Bobak Shahriari, Misha Denil, Matt Hoffman, Hubert Soyer, Richard Tanburn, Steven Kapturowski, Neil Rabinowitz, Duncan Williams, Gabriel Barth-Maron, Ziyu Wang, Nando de Freitas, Worlds Team
This paper introduces R2D3, an agent that makes efficient use of demonstrations to solve hard exploration problems in partially observable environments with highly variable initial conditions.
no code implementations • 8 May 2019 • Pedro A. Ortega, Jane. X. Wang, Mark Rowland, Tim Genewein, Zeb Kurth-Nelson, Razvan Pascanu, Nicolas Heess, Joel Veness, Alex Pritzel, Pablo Sprechmann, Siddhant M. Jayakumar, Tom McGrath, Kevin Miller, Mohammad Azar, Ian Osband, Neil Rabinowitz, András György, Silvia Chiappa, Simon Osindero, Yee Whye Teh, Hado van Hasselt, Nando de Freitas, Matthew Botvinick, Shane Legg
In this report we review memory-based meta-learning as a tool for building sample-efficient strategies that learn from past experience to adapt to any task within a target class.
1 code implementation • ICML 2017 • David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, Thomas Degris
One of the key challenges of artificial intelligence is to learn models that are effective in the context of planning.
27 code implementations • 2 Dec 2016 • James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, Raia Hadsell
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence.
Ranked #1 on class-incremental learning on cifar100