no code implementations • 20 Jul 2023 • Shruti R. Kulkarni, Aaron Young, Prasanna Date, Narasinga Rao Miniskar, Jeffrey S. Vetter, Farah Fahim, Benjamin Parpillon, Jennet Dickinson, Nhan Tran, Jieun Yoo, Corrinne Mills, Morris Swartz, Petar Maksimovic, Catherine D. Schuman, Alice Bean
We present our insights on the various system design choices - from data encoding to optimal hyperparameters of the training algorithm - for an accurate and compact SNN optimized for hardware deployment.
no code implementations • 7 Jun 2023 • Rohan Shenoy, Javier Duarte, Christian Herwig, James Hirschauer, Daniel Noonan, Maurizio Pierini, Nhan Tran, Cristina Mantilla Suarez
In this paper, we train a convolutional neural network (CNN) to learn a differentiable, fast approximation of the EMD and demonstrate that it can be used as a substitute for computing-intensive EMD implementations.
1 code implementation • 5 Jun 2023 • Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiu Qiang, Pan Li
This work examines different impacts of distribution shifts caused by either graph structure or node attributes and identifies a new type of shift, named conditional structure shift (CSS), which current GDA approaches are provably sub-optimal to deal with.
no code implementations • 13 Apr 2023 • Javier Campos, Zhen Dong, Javier Duarte, Amir Gholami, Michael W. Mahoney, Jovan Mitrevski, Nhan Tran
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs) for efficient field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) hardware.
1 code implementation • 4 Aug 2022 • David Xu, A. Barış Özgüler, Giuseppe Di Guglielmo, Nhan Tran, Gabriel N. Perdue, Luca Carloni, Farah Fahim
Efficient quantum control is necessary for practical quantum computing implementations with current technologies.
no code implementations • 16 Jul 2022 • Javier Duarte, Nhan Tran, Ben Hawks, Christian Herwig, Jules Muhizi, Shvetank Prakash, Vijay Janapa Reddi
Applications of machine learning (ML) are growing by the day for many unique and challenging scientific applications.
1 code implementation • 23 Jun 2022 • Hendrik Borras, Giuseppe Di Guglielmo, Javier Duarte, Nicolò Ghielmetti, Ben Hawks, Scott Hauck, Shih-Chieh Hsu, Ryan Kastner, Jason Liang, Andres Meza, Jules Muhizi, Tai Nguyen, Rushil Roy, Nhan Tran, Yaman Umuroglu, Olivia Weng, Aidan Yokuda, Michaela Blott
We present our development experience and recent results for the MLPerf Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms.
1 code implementation • 15 Jun 2022 • Alessandro Pappalardo, Yaman Umuroglu, Michaela Blott, Jovan Mitrevski, Ben Hawks, Nhan Tran, Vladimir Loncar, Sioni Summers, Hendrik Borras, Jules Muhizi, Matthew Trahms, Shih-Chieh Hsu, Scott Hauck, Javier Duarte
We present extensions to the Open Neural Network Exchange (ONNX) intermediate representation format to represent arbitrary-precision quantized neural networks.
no code implementations • 30 Mar 2022 • Philip Harris, Erik Katsavounidis, William Patrick McCormack, Dylan Rankin, Yongbin Feng, Abhijith Gandrakota, Christian Herwig, Burt Holzman, Kevin Pedro, Nhan Tran, Tingjun Yang, Jennifer Ngadiuba, Michael Coughlin, Scott Hauck, Shih-Chieh Hsu, Elham E Khoda, Deming Chen, Mark Neubauer, Javier Duarte, Georgia Karagiorgi, Mia Liu
Machine learning (ML) is becoming an increasingly important component of cutting-edge physics research, but its computational requirements present significant challenges.
no code implementations • 25 Oct 2021 • Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bahr, Jurgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomas E. Muller Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Kyle J Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Thomas K. Warburton, Maria Acosta Flechas, Anthony Aportela, Thomas Calvet, Leonardo Cristella, Daniel Diaz, Caterina Doglioni, Maria Domenica Galati, Elham E Khoda, Farah Fahim, Davide Giri, Benjamin Hawks, Duc Hoang, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Iris Johnson, Raghav Kansal, Ryan Kastner, Erik Katsavounidis, Jeffrey Krupa, Pan Li, Sandeep Madireddy, Ethan Marx, Patrick McCormack, Andres Meza, Jovan Mitrevski, Mohammed Attia Mohammed, Farouk Mokhtar, Eric Moreno, Srishti Nagu, Rohin Narayan, Noah Palladino, Zhiqiang Que, Sang Eon Park, Subramanian Ramamoorthy, Dylan Rankin, Simon Rothman, ASHISH SHARMA, Sioni Summers, Pietro Vischia, Jean-Roch Vlimant, Olivia Weng
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery.
no code implementations • NeurIPS Workshop AI4Scien 2021 • Tianchun Li, Shikun Liu, Yongbin Feng, Nhan Tran, Miaoyuan Liu, Pan Li
The graph neural network is trained on charged particles with well-known labels, which can be obtained from simulation truth information or measurements from data, and inferred on neutral particles of which such labeling is missing.
2 code implementations • 14 Jun 2021 • Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed, Danilo Pau, Urmish Thakker, Antonio Torrini, Peter Warden, Jay Cordaro, Giuseppe Di Guglielmo, Javier Duarte, Stephen Gibellini, Videet Parekh, Honson Tran, Nhan Tran, Niu Wenxu, Xu Xuesong
Advancements in ultra-low-power tiny machine learning (TinyML) systems promise to unlock an entirely new class of smart applications.
no code implementations • 4 May 2021 • Giuseppe Di Guglielmo, Farah Fahim, Christian Herwig, Manuel Blanco Valentin, Javier Duarte, Cristian Gingu, Philip Harris, James Hirschauer, Martin Kwok, Vladimir Loncar, Yingyi Luo, Llovizna Miranda, Jennifer Ngadiuba, Daniel Noonan, Seda Ogrenci-Memik, Maurizio Pierini, Sioni Summers, Nhan Tran
We demonstrate that a neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile.
2 code implementations • 9 Mar 2021 • Farah Fahim, Benjamin Hawks, Christian Herwig, James Hirschauer, Sergo Jindariani, Nhan Tran, Luca P. Carloni, Giuseppe Di Guglielmo, Philip Harris, Jeffrey Krupa, Dylan Rankin, Manuel Blanco Valentin, Josiah Hester, Yingyi Luo, John Mamish, Seda Orgrenci-Memik, Thea Aarrestad, Hamza Javed, Vladimir Loncar, Maurizio Pierini, Adrian Alan Pol, Sioni Summers, Javier Duarte, Scott Hauck, Shih-Chieh Hsu, Jennifer Ngadiuba, Mia Liu, Duc Hoang, Edward Kreinar, Zhenbin Wu
Accessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains.
1 code implementation • 22 Feb 2021 • Benjamin Hawks, Javier Duarte, Nicholas J. Fraser, Alessandro Pappalardo, Nhan Tran, Yaman Umuroglu
We study various configurations of pruning during quantization-aware training, which we term quantization-aware pruning, and the effect of techniques like regularization, batch normalization, and different pruning schemes on performance, computational complexity, and information content metrics.
2 code implementations • 13 Jan 2021 • Thea Aarrestad, Vladimir Loncar, Nicolò Ghielmetti, Maurizio Pierini, Sioni Summers, Jennifer Ngadiuba, Christoffer Petersson, Hampus Linander, Yutaro Iiyama, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Dylan Rankin, Sergo Jindariani, Kevin Pedro, Nhan Tran, Mia Liu, Edward Kreinar, Zhenbin Wu, Duc Hoang
We introduce an automated tool for deploying ultra low-latency, low-power deep neural networks with convolutional layers on FPGAs.
1 code implementation • 30 Nov 2020 • Aneesh Heintz, Vesal Razavimaleki, Javier Duarte, Gage DeZoort, Isobel Ojalvo, Savannah Thais, Markus Atkinson, Mark Neubauer, Lindsey Gray, Sergo Jindariani, Nhan Tran, Philip Harris, Dylan Rankin, Thea Aarrestad, Vladimir Loncar, Maurizio Pierini, Sioni Summers, Jennifer Ngadiuba, Mia Liu, Edward Kreinar, Zhenbin Wu
We develop and study FPGA implementations of algorithms for charged particle tracking based on graph neural networks.
1 code implementation • 14 Nov 2020 • Jason St. John, Christian Herwig, Diana Kafkes, William A. Pellico, Gabriel N. Perdue, Andres Quintero-Parra, Brian A. Schupbach, Kiyomi Seiya, Nhan Tran, Javier M. Duarte, Yunzhi Huang, Malachi Schram, Rachael Keller
We describe a method for precisely regulating the gradient magnet power supply at the Fermilab Booster accelerator complex using a neural network trained via reinforcement learning.
Accelerator Physics
2 code implementations • 16 Oct 2020 • Dylan Sheldon Rankin, Jeffrey Krupa, Philip Harris, Maria Acosta Flechas, Burt Holzman, Thomas Klijnsma, Kevin Pedro, Nhan Tran, Scott Hauck, Shih-Chieh Hsu, Matthew Trahms, Kelvin Lin, Yu Lou, Ta-Wei Ho, Javier Duarte, Mia Liu
Computing needs for high energy physics are already intensive and are expected to increase drastically in the coming years.
Computational Physics Distributed, Parallel, and Cluster Computing High Energy Physics - Experiment Data Analysis, Statistics and Probability Instrumentation and Detectors
no code implementations • 8 Aug 2020 • Yutaro Iiyama, Gianluca Cerminara, Abhijay Gupta, Jan Kieseler, Vladimir Loncar, Maurizio Pierini, Shah Rukh Qasim, Marcel Rieger, Sioni Summers, Gerrit Van Onsem, Kinga Wozniak, Jennifer Ngadiuba, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Dylan Rankin, Sergo Jindariani, Mia Liu, Kevin Pedro, Nhan Tran, Edward Kreinar, Zhenbin Wu
Graph neural networks have been shown to achieve excellent performance for several crucial tasks in particle physics, such as charged particle tracking, jet tagging, and clustering.
no code implementations • 25 Mar 2020 • Xiangyang Ju, Steven Farrell, Paolo Calafiura, Daniel Murnane, Prabhat, Lindsey Gray, Thomas Klijnsma, Kevin Pedro, Giuseppe Cerati, Jim Kowalkowski, Gabriel Perdue, Panagiotis Spentzouris, Nhan Tran, Jean-Roch Vlimant, Alexander Zlokapa, Joosep Pata, Maria Spiropulu, Sitong An, Adam Aurisano, Jeremy Hewes, Aristeidis Tsaris, Kazuhiro Terao, Tracy Usher
Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision.
Instrumentation and Detectors High Energy Physics - Experiment Computational Physics Data Analysis, Statistics and Probability
2 code implementations • 11 Mar 2020 • Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Duc Hoang, Sergo Jindariani, Edward Kreinar, Mia Liu, Vladimir Loncar, Jennifer Ngadiuba, Kevin Pedro, Maurizio Pierini, Dylan Rankin, Sheila Sagear, Sioni Summers, Nhan Tran, Zhenbin Wu
We discuss the trade-off between model accuracy and resource consumption.
3 code implementations • 5 Feb 2020 • Sioni Summers, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Duc Hoang, Sergo Jindariani, Edward Kreinar, Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Dylan Rankin, Nhan Tran, Zhenbin Wu
We describe the implementation of Boosted Decision Trees in the hls4ml library, which allows the translation of a trained model into FPGA firmware through an automated conversion process.
no code implementations • 5 Nov 2019 • Brian Nord, Andrew J. Connolly, Jamie Kinney, Jeremy Kubica, Gautaum Narayan, Joshua E. G. Peek, Chad Schafer, Erik J. Tollerud, Camille Avestruz, G. Jogesh Babu, Simon Birrer, Douglas Burke, João Caldeira, Douglas A. Caldwell, Joleen K. Carlberg, Yen-Chi Chen, Chuanfei Dong, Eric D. Feigelson, V. Zach Golkhou, Vinay Kashyap, T. S. Li, Thomas Loredo, Luisa Lucie-Smith, Kaisey S. Mandel, J. R. Martínez-Galarza, Adam A. Miller, Priyamvada Natarajan, Michelle Ntampaka, Andy Ptak, David Rapetti, Lior Shamir, Aneta Siemiginowska, Brigitta M. Sipőcz, Arfon M. Smith, Nhan Tran, Ricardo Vilalta, Lucianne M. Walkowicz, John ZuHone
The field of astronomy has arrived at a turning point in terms of size and complexity of both datasets and scientific collaboration.
no code implementations • 5 Nov 2019 • Duc Nguyen, Nhan Tran, Hung Le
Convolutional Recurrent Neural Networks (CRNNs) excel at scene text recognition.
Optical Character Recognition
Optical Character Recognition (OCR)
+1
1 code implementation • 18 Apr 2019 • Javier Duarte, Philip Harris, Scott Hauck, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Suffian Khan, Benjamin Kreis, Brian Lee, Mia Liu, Vladimir Lončar, Jennifer Ngadiuba, Kevin Pedro, Brandon Perez, Maurizio Pierini, Dylan Rankin, Nhan Tran, Matthew Trahms, Aristeidis Tsaris, Colin Versteeg, Ted W. Way, Dustin Werran, Zhenbin Wu
New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains.
Data Analysis, Statistics and Probability High Energy Physics - Experiment Computational Physics Instrumentation and Detectors
2 code implementations • 16 Apr 2018 • Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar, Benjamin Kreis, Jennifer Ngadiuba, Maurizio Pierini, Ryan Rivera, Nhan Tran, Zhenbin Wu
For our example jet substructure model, we fit well within the available resources of modern FPGAs with a latency on the scale of 100 ns.