no code implementations • 11 May 2023 • Fanny Jourdan, Agustin Picard, Thomas Fel, Laurent Risser, Jean Michel Loubes, Nicholas Asher
COCKATIEL is a novel, post-hoc, concept-based, model-agnostic XAI technique that generates meaningful explanations from the last layer of a neural net model trained on an NLP classification task by using Non-Negative Matrix Factorization (NMF) to discover the concepts the model leverages to make predictions and by exploiting a Sensitivity Analysis to estimate accurately the importance of each of these concepts for the model.
no code implementations • 27 Feb 2023 • Fanny Jourdan, Titon Tshiongo Kaninku, Nicholas Asher, Jean-Michel Loubes, Laurent Risser
To anticipate the certification of recommendation systems using textual data, we then used it on the Bios dataset, for which the learning task consists in predicting the occupation of female and male individuals, based on their LinkedIn biography.
1 code implementation • 21 Dec 2022 • Akshay Chaturvedi, Swarnadeep Bhar, Soumadeep Saha, Utpal Garain, Nicholas Asher
While transformer models achieve high performance on standard question answering tasks, we show that they fail to be semantically faithful once we perform these interventions for a significant number of cases (~50% for deletion intervention, and ~20% drop in accuracy for negation intervention).
no code implementations • 19 Oct 2021 • Nicholas Asher, Julie Hunter
We model here an epistemic bias we call \textit{interpretive blindness} (IB).
1 code implementation • 30 Aug 2021 • Lucas de Lara, Alberto González-Sanz, Nicholas Asher, Laurent Risser, Jean-Michel Loubes
We address the problem of designing realistic and feasible counterfactuals in the absence of a causal model.
no code implementations • 4 Jul 2021 • Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, Martin C. Cooper, Nicholas Asher, Joao Marques-Silva
Knowledge compilation (KC) languages find a growing number of practical uses, including in Constraint Programming (CP) and in Machine Learning (ML).
no code implementations • 1 Jan 2021 • Alexey Ignatiev, Nina Narodytska, Nicholas Asher, Joao Marques-Silva
Explanations of Machine Learning (ML) models often address a ‘Why?’ question.
no code implementations • 21 Dec 2020 • Alexey Ignatiev, Nina Narodytska, Nicholas Asher, Joao Marques-Silva
and 'Why Not?'
no code implementations • 21 Jan 2020 • Nicholas Asher, Soumya Paul, Chris Russell
This partiality makes it possible to hide explicit biases present in the algorithm that may be injurious or unfair. We investigate how easy it is to uncover these biases in providing complete and fair explanations by exploiting the structure of the set of counterfactuals providing a complete local explanation.
no code implementations • IJCNLP 2019 • Sonia Badene, Kate Thompson, Jean-Pierre Lorr{\'e}, Nicholas Asher
We show that on our task the generative model outperforms both deep learning architectures as well as more traditional ML approaches when learning discourse structure{---}it even outperforms the combination of deep learning methods and hand-crafted features.
no code implementations • JEPTALNRECITAL 2019 • Sonia Badene, Catherine Thompson, Nicholas Asher, Jean-Pierre Lorr{\'e}
Nous d{\'e}crivons nos exp{\'e}rimentations sur l{'}attachement des unit{\'e}s discursives pour former une structure, en utilisant le paradigme du data programming dans lequel peu ou pas d{'}annotations sont utilis{\'e}es pour construire un ensemble de donn{\'e}es d{'}entra{\^\i}nement {``}bruit{\'e}{''}.
no code implementations • JEPTALNRECITAL 2019 • Catherine Thompson, Nicholas Asher, Philippe Muller, J{\'e}r{\'e}my Auguste
Nous nous int{\'e}ressons ici {\`a} l{'}analyse de conversation par chat dans un contexte orient{\'e}-t{\^a}che avec un conseiller technique s{'}adressant {\`a} un client, o{\`u} l{'}objectif est d{'}{\'e}tiqueter les {\'e}nonc{\'e}s en actes de dialogue, pour alimenter des analyses des conversations en aval.
no code implementations • ACL 2019 • Sonia Badene, Kate Thompson, Jean-Pierre Lorr{\'e}, Nicholas Asher
This paper investigates the advantages and limits of data programming for the task of learning discourse structure.
no code implementations • 29 Jun 2018 • Nicholas Asher, Soumya Paul
In this paper, we show how game-theoretic work on conversation combined with a theory of discourse structure provides a framework for studying interpretive bias.
no code implementations • CL 2018 • Mathieu Morey, Philippe Muller, Nicholas Asher
This allows us to characterize families of parsing strategies across the different frameworks, in particular with respect to the notion of headedness.
no code implementations • EMNLP 2017 • Mathieu Morey, Philippe Muller, Nicholas Asher
This article evaluates purported progress over the past years in RST discourse parsing.
no code implementations • LREC 2016 • Manfred Stede, Stergos Afantenos, Andreas Peldszus, Nicholas Asher, J{\'e}r{\'e}my Perret
We present the first corpus of texts annotated with two alternative approaches to discourse structure, Rhetorical Structure Theory (Mann and Thompson, 1988) and Segmented Discourse Representation Theory (Asher and Lascarides, 2003).
no code implementations • LREC 2016 • Nicholas Asher, Julie Hunter, Mathieu Morey, Benamara Farah, Stergos Afantenos
This paper describes the STAC resource, a corpus of multi-party chats annotated for discourse structure in the style of SDRT (Asher and Lascarides, 2003; Lascarides and Asher, 2009).
no code implementations • LREC 2012 • Stergos Afantenos, Nicholas Asher, Farah Benamara, Myriam Bras, C{\'e}cile Fabre, Mai Ho-dac, Anne Le Draoulec, Philippe Muller, Marie-Paule P{\'e}ry-Woodley, Laurent Pr{\'e}vot, Josette Rebeyrolles, Ludovic Tanguy, Marianne Vergez-Couret, Laure Vieu
This paper describes the ANNODIS resource, a discourse-level annotated corpus for French.