no code implementations • 18 Jan 2023 • Megan M. Baker, Alexander New, Mario Aguilar-Simon, Ziad Al-Halah, Sébastien M. R. Arnold, Ese Ben-Iwhiwhu, Andrew P. Brna, Ethan Brooks, Ryan C. Brown, Zachary Daniels, Anurag Daram, Fabien Delattre, Ryan Dellana, Eric Eaton, Haotian Fu, Kristen Grauman, Jesse Hostetler, Shariq Iqbal, Cassandra Kent, Nicholas Ketz, Soheil Kolouri, George Konidaris, Dhireesha Kudithipudi, Erik Learned-Miller, Seungwon Lee, Michael L. Littman, Sandeep Madireddy, Jorge A. Mendez, Eric Q. Nguyen, Christine D. Piatko, Praveen K. Pilly, Aswin Raghavan, Abrar Rahman, Santhosh Kumar Ramakrishnan, Neale Ratzlaff, Andrea Soltoggio, Peter Stone, Indranil Sur, Zhipeng Tang, Saket Tiwari, Kyle Vedder, Felix Wang, Zifan Xu, Angel Yanguas-Gil, Harel Yedidsion, Shangqun Yu, Gautam K. Vallabha
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed.
no code implementations • 17 Dec 2021 • Glenn Maguire, Nicholas Ketz, Praveen Pilly, Jean-Baptiste Mouret
We demonstrate the potential of this approach in a simulated 3D car driving scenario, in which the agent devises a response in under 2 seconds to avoid collisions with objects it has not seen during training.
1 code implementation • 21 Sep 2019 • Pawel Ladosz, Eseoghene Ben-Iwhiwhu, Jeffery Dick, Yang Hu, Nicholas Ketz, Soheil Kolouri, Jeffrey L. Krichmar, Praveen Pilly, Andrea Soltoggio
This paper presents a new neural architecture that combines a modulated Hebbian network (MOHN) with DQN, which we call modulated Hebbian plus Q network architecture (MOHQA).
no code implementations • 6 Mar 2019 • Nicholas Ketz, Soheil Kolouri, Praveen Pilly
Here we propose a method to continually learn these internal world models through the interleaving of internally generated episodes of past experiences (i. e., pseudo-rehearsal).
no code implementations • 2 Mar 2019 • Soheil Kolouri, Nicholas Ketz, Xinyun Zou, Jeffrey Krichmar, Praveen Pilly
Catastrophic forgetting/interference is a critical problem for lifelong learning machines, which impedes the agents from maintaining their previously learned knowledge while learning new tasks.