Search Results for author: Nicholas Lourie

Found 9 papers, 7 papers with code

Findings of the 2021 Conference on Machine Translation (WMT21)

no code implementations WMT (EMNLP) 2021 Farhad Akhbardeh, Arkady Arkhangorodsky, Magdalena Biesialska, Ondřej Bojar, Rajen Chatterjee, Vishrav Chaudhary, Marta R. Costa-Jussa, Cristina España-Bonet, Angela Fan, Christian Federmann, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Barry Haddow, Leonie Harter, Kenneth Heafield, Christopher Homan, Matthias Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai, Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp Koehn, Nicholas Lourie, Christof Monz, Makoto Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki Nakazawa, Matteo Negri, Santanu Pal, Allahsera Auguste Tapo, Marco Turchi, Valentin Vydrin, Marcos Zampieri

This paper presents the results of the newstranslation task, the multilingual low-resourcetranslation for Indo-European languages, thetriangular translation task, and the automaticpost-editing task organised as part of the Con-ference on Machine Translation (WMT) 2021. In the news task, participants were asked tobuild machine translation systems for any of10 language pairs, to be evaluated on test setsconsisting mainly of news stories.

Machine Translation Translation

UNICORN on RAINBOW: A Universal Commonsense Reasoning Model on a New Multitask Benchmark

1 code implementation24 Mar 2021 Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi

First, we propose a new multitask benchmark, RAINBOW, to promote research on commonsense models that generalize well over multiple tasks and datasets.

Knowledge Graphs Pretrained Language Models +1

GENIE: A Leaderboard for Human-in-the-Loop Evaluation of Text Generation

no code implementations17 Jan 2021 Daniel Khashabi, Gabriel Stanovsky, Jonathan Bragg, Nicholas Lourie, Jungo Kasai, Yejin Choi, Noah A. Smith, Daniel S. Weld

Leaderboards have eased model development for many NLP datasets by standardizing their evaluation and delegating it to an independent external repository.

Machine Translation Reading Comprehension +2

Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

5 code implementations EMNLP 2020 Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith, Yejin Choi

Experiments across four datasets show that these model-dependent measures reveal three distinct regions in the data map, each with pronounced characteristics.

Out-of-Distribution Generalization

Scruples: A Corpus of Community Ethical Judgments on 32,000 Real-Life Anecdotes

1 code implementation20 Aug 2020 Nicholas Lourie, Ronan Le Bras, Yejin Choi

As AI systems become an increasing part of people's everyday lives, it becomes ever more important that they understand people's ethical norms.

CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge

1 code implementation NAACL 2019 Alon Talmor, Jonathan Herzig, Nicholas Lourie, Jonathan Berant

To investigate question answering with prior knowledge, we present CommonsenseQA: a challenging new dataset for commonsense question answering.

Ranked #17 on Common Sense Reasoning on CommonsenseQA (using extra training data)

Common Sense Reasoning Multiple-choice +1

ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning

2 code implementations31 Oct 2018 Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi

We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge.

Extracting Scientific Figures with Distantly Supervised Neural Networks

1 code implementation6 Apr 2018 Noah Siegel, Nicholas Lourie, Russell Power, Waleed Ammar

Non-textual components such as charts, diagrams and tables provide key information in many scientific documents, but the lack of large labeled datasets has impeded the development of data-driven methods for scientific figure extraction.

Cannot find the paper you are looking for? You can Submit a new open access paper.