no code implementations • ACL (RepL4NLP) 2021 • Raghuveer Thirukovalluru, Mukund Sridhar, Dung Thai, Shruti Chanumolu, Nicholas Monath, Sankaranarayanan Ananthakrishnan, Andrew McCallum
Specially, neural semantic parsers (NSPs) effectively translate natural questions to logical forms, which execute on KB and give desirable answers.
1 code implementation • NAACL 2022 • Dhruv Agarwal, Rico Angell, Nicholas Monath, Andrew McCallum
Learning representations of entity mentions is a core component of modern entity linking systems for both candidate generation and making linking predictions.
Ranked #1 on
Entity Linking
on ZESHEL
no code implementations • CRAC (ACL) 2021 • Nishant Yadav, Nicholas Monath, Rico Angell, Andrew McCallum
Coreference decisions among event mentions and among co-occurring entity mentions are highly interdependent, thus motivating joint inference.
no code implementations • 4 May 2023 • Nishant Yadav, Nicholas Monath, Manzil Zaheer, Andrew McCallum
Cross-encoder models, which jointly encode and score a query-item pair, are typically prohibitively expensive for k-nearest neighbor search.
no code implementations • 27 Mar 2023 • Nicholas Monath, Manzil Zaheer, Kelsey Allen, Andrew McCallum
First, we introduce an algorithm that uses a tree structure to approximate the softmax with provable bounds and that dynamically maintains the tree.
1 code implementation • 26 Oct 2022 • Tianyu Liu, Yuchen Jiang, Nicholas Monath, Ryan Cotterell, Mrinmaya Sachan
Recent years have seen a paradigm shift in NLP towards using pretrained language models ({PLM}) for a wide range of tasks.
Ranked #1 on
Relation Extraction
on CoNLL04
(RE+ Micro F1 metric)
1 code implementation • 23 Oct 2022 • Nishant Yadav, Nicholas Monath, Rico Angell, Manzil Zaheer, Andrew McCallum
When the similarity is measured by dot-product between dual-encoder vectors or $\ell_2$-distance, there already exist many scalable and efficient search methods.
1 code implementation • 7 Oct 2022 • Kumar Shridhar, Nicholas Monath, Raghuveer Thirukovalluru, Alessandro Stolfo, Manzil Zaheer, Andrew McCallum, Mrinmaya Sachan
Ontonotes has served as the most important benchmark for coreference resolution.
no code implementations • 15 Sep 2022 • Somnath Basu Roy Chowdhury, Nicholas Monath, Avinava Dubey, Amr Ahmed, Snigdha Chaturvedi
We then use these representations to quantify the relevance of review sentences using a novel approximate geodesic distance based scoring mechanism.
1 code implementation • 17 Dec 2021 • Archan Ray, Nicholas Monath, Andrew McCallum, Cameron Musco
Approximation methods reduce this quadratic complexity, often by using a small subset of exactly computed similarities to approximate the remainder of the complete pairwise similarity matrix.
1 code implementation • NeurIPS 2021 • Michael Boratko, Dongxu Zhang, Nicholas Monath, Luke Vilnis, Kenneth Clarkson, Andrew McCallum
While vectors in Euclidean space can theoretically represent any graph, much recent work shows that alternatives such as complex, hyperbolic, order, or box embeddings have geometric properties better suited to modeling real-world graphs.
1 code implementation • 2 Sep 2021 • Dhruv Agarwal, Rico Angell, Nicholas Monath, Andrew McCallum
Previous work has shown promising results in performing entity linking by measuring not only the affinities between mentions and entities but also those amongst mentions.
no code implementations • 14 Apr 2021 • Craig S. Greenberg, Sebastian Macaluso, Nicholas Monath, Avinava Dubey, Patrick Flaherty, Manzil Zaheer, Amr Ahmed, Kyle Cranmer, Andrew McCallum
In those cases, hierarchical clustering can be seen as a combinatorial optimization problem.
no code implementations • 14 Feb 2021 • Ethan Shen, Maria Brbic, Nicholas Monath, Jiaqi Zhai, Manzil Zaheer, Jure Leskovec
In this paper, we present a comprehensive empirical study on graph embedded few-shot learning.
2 code implementations • 22 Oct 2020 • Nicholas Monath, Avinava Dubey, Guru Guruganesh, Manzil Zaheer, Amr Ahmed, Andrew McCallum, Gokhan Mergen, Marc Najork, Mert Terzihan, Bryon Tjanaka, YuAn Wang, Yuchen Wu
The applicability of agglomerative clustering, for inferring both hierarchical and flat clustering, is limited by its scalability.
no code implementations • NAACL 2021 • Rico Angell, Nicholas Monath, Sunil Mohan, Nishant Yadav, Andrew McCallum
In this paper, we introduce a model in which linking decisions can be made not merely by linking to a knowledge base entity but also by grouping multiple mentions together via clustering and jointly making linking predictions.
1 code implementation • Findings of the Association for Computational Linguistics 2020 • Rajarshi Das, Ameya Godbole, Nicholas Monath, Manzil Zaheer, Andrew McCallum
A case-based reasoning (CBR) system solves a new problem by retrieving `cases' that are similar to the given problem.
Ranked #1 on
Link Prediction
on NELL-995
1 code implementation • AKBC 2020 • Dung Thai, Zhiyang Xu, Nicholas Monath, Boris Veytsman, Andrew McCallum
In this paper, we describe a technique for using BibTeX to generate, automatically, a large-scale 41M labeled strings), labeled dataset, that is four orders of magnitude larger than the current largest CFE dataset, namely the UMass Citation Field Extraction dataset [Anzaroot and McCallum, 2013].
1 code implementation • 26 Feb 2020 • Craig S. Greenberg, Sebastian Macaluso, Nicholas Monath, Ji-Ah Lee, Patrick Flaherty, Kyle Cranmer, Andrew Mcgregor, Andrew McCallum
In contrast to existing methods, we present novel dynamic-programming algorithms for \emph{exact} inference in hierarchical clustering based on a novel trellis data structure, and we prove that we can exactly compute the partition function, maximum likelihood hierarchy, and marginal probabilities of sub-hierarchies and clusters.
no code implementations • AKBC 2020 • Derek Tam, Nicholas Monath, Ari Kobren, Andrew McCallum
The hierarchical structure of research organizations plays a pivotal role in science of science research as well as in tools that track the research achievements and output.
1 code implementation • 31 Dec 2019 • Nicholas Monath, Ari Kobren, Akshay Krishnamurthy, Michael Glass, Andrew McCallum
We introduce Grinch, a new algorithm for large-scale, non-greedy hierarchical clustering with general linkage functions that compute arbitrary similarity between two point sets.
1 code implementation • ACL 2019 • Derek Tam, Nicholas Monath, Ari Kobren, Aaron Traylor, Rajarshi Das, Andrew McCallum
We evaluate STANCE's ability to detect whether two strings can refer to the same entity--a task we term alias detection.
1 code implementation • 19 Jun 2019 • Nishant Yadav, Ari Kobren, Nicholas Monath, Andrew McCallum
Thus we introduce an approach to supervised hierarchical clustering that smoothly interpolates between single, average, and complete linkage, and we give a training procedure that simultaneously learns a linkage function and a dissimilarity function.
no code implementations • NeurIPS 2018 • Craig Greenberg, Nicholas Monath, Ari Kobren, Patrick Flaherty, Andrew Mcgregor, Andrew McCallum
For many classic structured prediction problems, probability distributions over the dependent variables can be efficiently computed using widely-known algorithms and data structures (such as forward-backward, and its corresponding trellis for exact probability distributions in Markov models).
no code implementations • AKBC 2019 • Ari Kobren, Nicholas Monath, Andrew McCallum
Users have tremendous potential to aid in the construction and maintenance of knowledges bases (KBs) through the contribution of feedback that identifies incorrect and missing entity attributes and relations.
no code implementations • 29 Jun 2018 • Bo Xiao, Nicholas Monath, Shankar Ananthakrishnan, Abishek Ravi
We first binarize play durations to obtain implicit positive and negative affinity labels.
2 code implementations • 6 Apr 2017 • Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, Andrew McCallum
Many modern clustering methods scale well to a large number of data items, N, but not to a large number of clusters, K. This paper introduces PERCH, a new non-greedy algorithm for online hierarchical clustering that scales to both massive N and K--a problem setting we term extreme clustering.