1 code implementation • 24 Jul 2024 • Alejandra Pérez, Santiago Rodríguez, Nicolás Ayobi, Nicolás Aparicio, Eugénie Dessevres, Pablo Arbeláez
Phase recognition in surgical videos is crucial for enhancing computer-aided surgical systems as it enables automated understanding of sequential procedural stages.
Ranked #1 on
Surgical phase recognition
on GraSP
3 code implementations • 20 Jan 2024 • Nicolás Ayobi, Santiago Rodríguez, Alejandra Pérez, Isabela Hernández, Nicolás Aparicio, Eugénie Dessevres, Sebastián Peña, Jessica Santander, Juan Ignacio Caicedo, Nicolás Fernández, Pablo Arbeláez
To exploit our proposed benchmark, we introduce the Transformers for Actions, Phases, Steps, and Instrument Segmentation (TAPIS) model, a general architecture that combines a global video feature extractor with localized region proposals from an instrument segmentation model to tackle the multi-granularity of our benchmark.
Ranked #2 on
Surgical phase recognition
on MISAW
1 code implementation • 25 Aug 2023 • Cristina González, Nicolás Ayobi, Felipe Escallón, Laura Baldovino-Chiquillo, Maria Wilches-Mogollón, Donny Pasos, Nicole Ramírez, Jose Pinzón, Olga Sarmiento, D Alex Quistberg, Pablo Arbeláez
This paper introduces a novel benchmark to study the impact and relationship of built environment elements on pedestrian collision prediction, intending to enhance environmental awareness in autonomous driving systems to prevent pedestrian injuries actively.
1 code implementation • 16 Mar 2023 • Nicolás Ayobi, Alejandra Pérez-Rondón, Santiago Rodríguez, Pablo Arbeláez
We propose Masked-Attention Transformers for Surgical Instrument Segmentation (MATIS), a two-stage, fully transformer-based method that leverages modern pixel-wise attention mechanisms for instrument segmentation.
1 code implementation • 8 Dec 2022 • Natalia Valderrama, Paola Ruiz Puentes, Isabela Hernández, Nicolás Ayobi, Mathilde Verlyk, Jessica Santander, Juan Caicedo, Nicolás Fernández, Pablo Arbeláez
Second, we present Transformers for Action, Phase, Instrument, and steps Recognition (TAPIR) as a strong baseline for surgical scene understanding.
Ranked #3 on
Surgical phase recognition
on MISAW