1 code implementation • 4 Jun 2024 • Martin Uhrin, Austin Zadoks, Luca Binci, Nicola Marzari, Iurii Timrov
We target here the prediction of Hubbard parameters computed self-consistently with iterative linear-response calculations, as implemented in density-functional perturbation theory (DFPT), and structural relaxations.
no code implementations • 8 Dec 2020 • Áron Szabó Cedric Klinkert, Davide Campi, Christian Stieger, Nicola Marzari, Mathieu Luisier
Full-band atomistic quantum transport simulations based on first principles are employed to assess the potential of band-to-band tunneling FETs (TFETs) with a 2-D channel material as future electronic circuit components.
Mesoscale and Nanoscale Physics
no code implementations • 27 Mar 2020 • Leopold Talirz, Snehal Kumbhar, Elsa Passaro, Aliaksandr V. Yakutovich, Valeria Granata, Fernando Gargiulo, Marco Borelli, Martin Uhrin, Sebastiaan P. Huber, Spyros Zoupanos, Carl S. Adorf, Casper W. Andersen, Ole Schütt, Carlo A. Pignedoli, Daniele Passerone, Joost VandeVondele, Thomas C. Schulthess, Berend Smit, Giovanni Pizzi, Nicola Marzari
Materials Cloud is a platform designed to enable open and seamless sharing of resources for computational science, driven by applications in materials modelling.
Materials Science Computational Physics J.2; I.6; H.4
2 code implementations • 1 Sep 2019 • Valerio Vitale, Giovanni Pizzi, Antimo Marrazzo, Jonathan R. Yates, Nicola Marzari, Arash A. Mostofi
Maximally-localised Wannier functions (MLWFs) are routinely used to compute from first-principles advanced materials properties that require very dense Brillouin zone integration and to build accurate tight-binding models for scale-bridging simulations.
Computational Physics Materials Science
1 code implementation • 23 Jul 2019 • Giovanni Pizzi, Valerio Vitale, Ryotaro Arita, Stefan Blügel, Frank Freimuth, Guillaume Géranton, Marco Gibertini, Dominik Gresch, Charles Johnson, Takashi Koretsune, Julen Ibañez-Azpiroz, Hyungjun Lee, Jae-Mo Lihm, Daniel Marchand, Antimo Marrazzo, Yuriy Mokrousov, Jamal I. Mustafa, Yoshiro Nohara, Yusuke Nomura, Lorenzo Paulatto, Samuel Poncé, Thomas Ponweiser, Junfeng Qiao, Florian Thöle, Stepan S. Tsirkin, Małgorzata Wierzbowska, Nicola Marzari, David Vanderbilt, Ivo Souza, Arash A. Mostofi, Jonathan R. Yates
Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states.
Materials Science Computational Physics
1 code implementation • 8 Apr 2019 • Robert J. N. Baldock, Nicola Marzari
We recapitulate the Bayesian formulation of neural network based classifiers and show that, while sampling from the posterior does indeed lead to better generalisation than is obtained by standard optimisation of the cost function, even better performance can in general be achieved by sampling finite temperature ($T$) distributions derived from the posterior.