no code implementations • 3 Oct 2024 • Julia Alekseenko, Bram Stieltjes, Michael Bach, Melanie Boerries, Oliver Opitz, Alexandros Karargyris, Nicolas Padoy
The IHU Strasbourg (Institute of Minimal-invasive Surgery) has the lead in this initiative to develop the federated learning (FL) proof of concept (POC) that will serve as a foundation for advancing AI in healthcare.
no code implementations • 30 Sep 2024 • Kun Yuan, Vinkle Srivastav, Nassir Navab, Nicolas Padoy
Surgical video-language pretraining (VLP) faces unique challenges due to the knowledge domain gap and the scarcity of multi-modal data.
no code implementations • 12 Jul 2024 • Chinedu Innocent Nwoye, Rupak Bose, Kareem Elgohary, Lorenzo Arboit, Giorgio Carlino, Joël L. Lavanchy, Pietro Mascagni, Nicolas Padoy
Human expert survey shows that participants were highly challenged by the realistic characteristics of the generated samples, demonstrating Surgical Imagen's effectiveness as a practical alternative to real data collection.
no code implementations • 9 Jul 2024 • Aditya Murali, Pietro Mascagni, Didier Mutter, Nicolas Padoy
The recently introduced Segment-Anything Model (SAM) has the potential to greatly accelerate the development of segmentation models.
no code implementations • 7 Jul 2024 • Idris Hamoud, Alexandros Karargyris, Aidean Sharghi, Omid Mohareri, Nicolas Padoy
Semantic segmentation and activity classification are key components to creating intelligent surgical systems able to understand and assist clinical workflow.
no code implementations • 30 May 2024 • Chinedu Innocent Nwoye, Nicolas Padoy
This work sets a new standard in surgical tool tracking, providing dynamic trajectories for more adaptable and precise assistance in minimally invasive surgeries.
no code implementations • 16 May 2024 • Kun Yuan, Vinkle Srivastav, Nassir Navab, Nicolas Padoy
By disentangling embedding spaces of different hierarchical levels, the learned multi-modal representations encode short-term and long-term surgical concepts in the same model.
1 code implementation • 22 Apr 2024 • Meyer Adrien, Mazellier Jean-Paul, Jeremy Dana, Nicolas Padoy
In this approach, a continuous single-point annotation is maintained by keeping the cursor on the object in a live video, mitigating the need for tedious pausing and repetitive navigation inherent in traditional annotation methods.
1 code implementation • CVPR 2024 • Vinkle Srivastav, Keqi Chen, Nicolas Padoy
Unlike current state-of-the-art fully-supervised methods, our approach does not require any 2d or 3d ground-truth poses and uses only the multi-view input images from a calibrated camera setup and 2d pseudo poses generated from an off-the-shelf 2d human pose estimator.
no code implementations • 20 Mar 2024 • Diwei Wang, Kun Yuan, Candice Muller, Frédéric Blanc, Nicolas Padoy, Hyewon Seo
Based on a large-scale pre-trained Vision Language Model (VLM), our model learns and improves visual, textual, and numerical representations of patient gait videos, through a collective learning across three distinct modalities: gait videos, class-specific descriptions, and numerical gait parameters.
1 code implementation • 11 Mar 2024 • Siddhant Satyanaik, Aditya Murali, Deepak Alapatt, Xin Wang, Pietro Mascagni, Nicolas Padoy
Purpose: Advances in deep learning have resulted in effective models for surgical video analysis; however, these models often fail to generalize across medical centers due to domain shift caused by variations in surgical workflow, camera setups, and patient demographics.
no code implementations • 22 Feb 2024 • Jamshid Hassanpour, Vinkle Srivastav, Didier Mutter, Nicolas Padoy
In this work, we investigate the application of contrastive learning to the domain of medical image analysis.
no code implementations • 19 Dec 2023 • Idris Hamoud, Muhammad Abdullah Jamal, Vinkle Srivastav, Didier Mutter, Nicolas Padoy, Omid Mohareri
Surgical robotics holds much promise for improving patient safety and clinician experience in the Operating Room (OR).
1 code implementation • 19 Dec 2023 • Aditya Murali, Deepak Alapatt, Pietro Mascagni, Armine Vardazaryan, Alain Garcia, Nariaki Okamoto, Guido Costamagna, Didier Mutter, Jacques Marescaux, Bernard Dallemagne, Nicolas Padoy
This technical report provides a detailed overview of Endoscapes, a dataset of laparoscopic cholecystectomy (LC) videos with highly intricate annotations targeted at automated assessment of the Critical View of Safety (CVS).
1 code implementation • 18 Dec 2023 • Joel L. Lavanchy, Sanat Ramesh, Diego Dall'Alba, Cristians Gonzalez, Paolo Fiorini, Beat Muller-Stich, Philipp C. Nett, Jacques Marescaux, Didier Mutter, Nicolas Padoy
The use of multi-centric training data, experiments 6) and 7), improves the generalization capabilities of the models, bringing them beyond the level of independent mono-centric training and validation (experiments 1) and 2)).
2 code implementations • 15 Dec 2023 • Kun Yuan, Manasi Kattel, Joel L. Lavanchy, Nassir Navab, Vinkle Srivastav, Nicolas Padoy
We highlight that the primary limitation in the current surgical VQA systems is the lack of scene knowledge to answer complex queries.
no code implementations • 14 Dec 2023 • Jean-Paul Mazellier, Antoine Boujon, Méline Bour-Lang, Maël Erharhd, Julien Waechter, Emilie Wernert, Pietro Mascagni, Nicolas Padoy
This technical report presents MOSaiC 3. 6. 2, a web-based collaborative platform designed for the annotation and evaluation of medical videos.
1 code implementation • 12 Dec 2023 • Chinedu Innocent Nwoye, Kareem Elgohary, Anvita Srinivas, Fauzan Zaid, Joël L. Lavanchy, Nicolas Padoy
Tool tracking in surgical videos is vital in computer-assisted intervention for tasks like surgeon skill assessment, safety zone estimation, and human-machine collaboration during minimally invasive procedures.
1 code implementation • 11 Dec 2023 • Aditya Murali, Deepak Alapatt, Pietro Mascagni, Armine Vardazaryan, Alain Garcia, Nariaki Okamoto, Didier Mutter, Nicolas Padoy
Recently, spatiotemporal graphs have emerged as a concise and elegant manner of representing video clips in an object-centric fashion, and have shown to be useful for downstream tasks such as action recognition.
no code implementations • 10 Dec 2023 • Deepak Alapatt, Aditya Murali, Vinkle Srivastav, Pietro Mascagni, AI4SafeChole Consortium, Nicolas Padoy
Methods: In this work, we employ self-supervised learning to flexibly leverage diverse surgical datasets, thereby learning taskagnostic representations that can be used for various surgical downstream tasks.
no code implementations • 4 Sep 2023 • Luca Sestini, Benoit Rosa, Elena De Momi, Giancarlo Ferrigno, Nicolas Padoy
In this work, we develop a framework for instance segmentation not relying on spatial annotations for training.
1 code implementation • 27 Jul 2023 • Kun Yuan, Vinkle Srivastav, Tong Yu, Joel L. Lavanchy, Pietro Mascagni, Nassir Navab, Nicolas Padoy
We demonstrate the representational capability of this space through several vision-and-language surgical tasks and vision-only tasks specific to surgery.
1 code implementation • 18 Jul 2023 • Saurav Sharma, Chinedu Innocent Nwoye, Didier Mutter, Nicolas Padoy
We analyze how the amount of instrument spatial annotations affects triplet detection and observe that accurate instrument localization does not guarantee better triplet detection due to the risk of erroneous associations with the verbs and targets.
1 code implementation • 26 Jun 2023 • Jean-Paul Mazellier, Méline Bour-Lang, Sabrina Bourouis, Johan Moreau, Aimable Muzuri, Olivier Schweitzer, Aslan Vatsaev, Julien Waechter, Emilie Wernert, Frederic Woelffel, Alexandre Hostettler, Nicolas Padoy, Flavien Bridault
This technical report presents Indexity 1. 4. 0, a web-based tool designed for medical video annotation in surgical data science projects.
no code implementations • 11 May 2023 • Aneeq Zia, Kiran Bhattacharyya, Xi Liu, Max Berniker, Ziheng Wang, Rogerio Nespolo, Satoshi Kondo, Satoshi Kasai, Kousuke Hirasawa, Bo Liu, David Austin, Yiheng Wang, Michal Futrega, Jean-Francois Puget, Zhenqiang Li, Yoichi Sato, Ryo Fujii, Ryo Hachiuma, Mana Masuda, Hideo Saito, An Wang, Mengya Xu, Mobarakol Islam, Long Bai, Winnie Pang, Hongliang Ren, Chinedu Nwoye, Luca Sestini, Nicolas Padoy, Maximilian Nielsen, Samuel Schüttler, Thilo Sentker, Hümeyra Husseini, Ivo Baltruschat, Rüdiger Schmitz, René Werner, Aleksandr Matsun, Mugariya Farooq, Numan Saaed, Jose Renato Restom Viera, Mohammad Yaqub, Neil Getty, Fangfang Xia, Zixuan Zhao, Xiaotian Duan, Xing Yao, Ange Lou, Hao Yang, Jintong Han, Jack Noble, Jie Ying Wu, Tamer Abdulbaki Alshirbaji, Nour Aldeen Jalal, Herag Arabian, Ning Ding, Knut Moeller, Weiliang Chen, Quan He, Muhammad Bilal, Taofeek Akinosho, Adnan Qayyum, Massimo Caputo, Hunaid Vohra, Michael Loizou, Anuoluwapo Ajayi, Ilhem Berrou, Faatihah Niyi-Odumosu, Lena Maier-Hein, Danail Stoyanov, Stefanie Speidel, Anthony Jarc
Unfortunately, obtaining the annotations needed to train machine learning models to identify and localize surgical tools is a difficult task.
no code implementations • CVPR 2023 • Matthias Eisenmann, Annika Reinke, Vivienn Weru, Minu Dietlinde Tizabi, Fabian Isensee, Tim J. Adler, Sharib Ali, Vincent Andrearczyk, Marc Aubreville, Ujjwal Baid, Spyridon Bakas, Niranjan Balu, Sophia Bano, Jorge Bernal, Sebastian Bodenstedt, Alessandro Casella, Veronika Cheplygina, Marie Daum, Marleen de Bruijne, Adrien Depeursinge, Reuben Dorent, Jan Egger, David G. Ellis, Sandy Engelhardt, Melanie Ganz, Noha Ghatwary, Gabriel Girard, Patrick Godau, Anubha Gupta, Lasse Hansen, Kanako Harada, Mattias Heinrich, Nicholas Heller, Alessa Hering, Arnaud Huaulmé, Pierre Jannin, Ali Emre Kavur, Oldřich Kodym, Michal Kozubek, Jianning Li, Hongwei Li, Jun Ma, Carlos Martín-Isla, Bjoern Menze, Alison Noble, Valentin Oreiller, Nicolas Padoy, Sarthak Pati, Kelly Payette, Tim Rädsch, Jonathan Rafael-Patiño, Vivek Singh Bawa, Stefanie Speidel, Carole H. Sudre, Kimberlin Van Wijnen, Martin Wagner, Donglai Wei, Amine Yamlahi, Moi Hoon Yap, Chun Yuan, Maximilian Zenk, Aneeq Zia, David Zimmerer, Dogu Baran Aydogan, Binod Bhattarai, Louise Bloch, Raphael Brüngel, Jihoon Cho, Chanyeol Choi, Qi Dou, Ivan Ezhov, Christoph M. Friedrich, Clifton Fuller, Rebati Raman Gaire, Adrian Galdran, Álvaro García Faura, Maria Grammatikopoulou, SeulGi Hong, Mostafa Jahanifar, Ikbeom Jang, Abdolrahim Kadkhodamohammadi, Inha Kang, Florian Kofler, Satoshi Kondo, Hugo Kuijf, Mingxing Li, Minh Huan Luu, Tomaž Martinčič, Pedro Morais, Mohamed A. Naser, Bruno Oliveira, David Owen, Subeen Pang, Jinah Park, Sung-Hong Park, Szymon Płotka, Elodie Puybareau, Nasir Rajpoot, Kanghyun Ryu, Numan Saeed, Adam Shephard, Pengcheng Shi, Dejan Štepec, Ronast Subedi, Guillaume Tochon, Helena R. Torres, Helene Urien, João L. Vilaça, Kareem Abdul Wahid, Haojie Wang, Jiacheng Wang, Liansheng Wang, Xiyue Wang, Benedikt Wiestler, Marek Wodzinski, Fangfang Xia, Juanying Xie, Zhiwei Xiong, Sen yang, Yanwu Yang, Zixuan Zhao, Klaus Maier-Hein, Paul F. Jäger, Annette Kopp-Schneider, Lena Maier-Hein
The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning.
no code implementations • 22 Mar 2023 • Amine Yamlahi, Thuy Nuong Tran, Patrick Godau, Melanie Schellenberg, Dominik Michael, Finn-Henri Smidt, Jan-Hinrich Noelke, Tim Adler, Minu Dietlinde Tizabi, Chinedu Nwoye, Nicolas Padoy, Lena Maier-Hein
Surgical scene understanding is a key prerequisite for contextaware decision support in the operating room.
no code implementations • 21 Feb 2023 • Sanat Ramesh, Diego Dall'Alba, Cristians Gonzalez, Tong Yu, Pietro Mascagni, Didier Mutter, Jacques Marescaux, Paolo Fiorini, Nicolas Padoy
In this work, we propose to use coarser and easier-to-annotate activity labels, namely phases, as weak supervision to learn step recognition with fewer step annotated videos.
2 code implementations • 13 Feb 2023 • Chinedu Innocent Nwoye, Tong Yu, Saurav Sharma, Aditya Murali, Deepak Alapatt, Armine Vardazaryan, Kun Yuan, Jonas Hajek, Wolfgang Reiter, Amine Yamlahi, Finn-Henri Smidt, Xiaoyang Zou, Guoyan Zheng, Bruno Oliveira, Helena R. Torres, Satoshi Kondo, Satoshi Kasai, Felix Holm, Ege Özsoy, Shuangchun Gui, Han Li, Sista Raviteja, Rachana Sathish, Pranav Poudel, Binod Bhattarai, Ziheng Wang, Guo Rui, Melanie Schellenberg, João L. Vilaça, Tobias Czempiel, Zhenkun Wang, Debdoot Sheet, Shrawan Kumar Thapa, Max Berniker, Patrick Godau, Pedro Morais, Sudarshan Regmi, Thuy Nuong Tran, Jaime Fonseca, Jan-Hinrich Nölke, Estevão Lima, Eduard Vazquez, Lena Maier-Hein, Nassir Navab, Pietro Mascagni, Barbara Seeliger, Cristians Gonzalez, Didier Mutter, Nicolas Padoy
This paper presents the CholecTriplet2022 challenge, which extends surgical action triplet modeling from recognition to detection.
Ranked #1 on Action Triplet Detection on CholecT50 (Challenge)
no code implementations • 17 Jan 2023 • Joël L. Lavanchy, Armine Vardazaryan, Pietro Mascagni, AI4SafeChole Consortium, Didier Mutter, Nicolas Padoy
Results: The internal dataset consisting of 356, 267 images from 48 videos and the two multicentric test datasets consisting of 54, 385 and 58, 349 images from 10 and 20 videos, respectively, were annotated.
no code implementations • 16 Dec 2022 • Matthias Eisenmann, Annika Reinke, Vivienn Weru, Minu Dietlinde Tizabi, Fabian Isensee, Tim J. Adler, Patrick Godau, Veronika Cheplygina, Michal Kozubek, Sharib Ali, Anubha Gupta, Jan Kybic, Alison Noble, Carlos Ortiz de Solórzano, Samiksha Pachade, Caroline Petitjean, Daniel Sage, Donglai Wei, Elizabeth Wilden, Deepak Alapatt, Vincent Andrearczyk, Ujjwal Baid, Spyridon Bakas, Niranjan Balu, Sophia Bano, Vivek Singh Bawa, Jorge Bernal, Sebastian Bodenstedt, Alessandro Casella, Jinwook Choi, Olivier Commowick, Marie Daum, Adrien Depeursinge, Reuben Dorent, Jan Egger, Hannah Eichhorn, Sandy Engelhardt, Melanie Ganz, Gabriel Girard, Lasse Hansen, Mattias Heinrich, Nicholas Heller, Alessa Hering, Arnaud Huaulmé, Hyunjeong Kim, Bennett Landman, Hongwei Bran Li, Jianning Li, Jun Ma, Anne Martel, Carlos Martín-Isla, Bjoern Menze, Chinedu Innocent Nwoye, Valentin Oreiller, Nicolas Padoy, Sarthak Pati, Kelly Payette, Carole Sudre, Kimberlin Van Wijnen, Armine Vardazaryan, Tom Vercauteren, Martin Wagner, Chuanbo Wang, Moi Hoon Yap, Zeyun Yu, Chun Yuan, Maximilian Zenk, Aneeq Zia, David Zimmerer, Rina Bao, Chanyeol Choi, Andrew Cohen, Oleh Dzyubachyk, Adrian Galdran, Tianyuan Gan, Tianqi Guo, Pradyumna Gupta, Mahmood Haithami, Edward Ho, Ikbeom Jang, Zhili Li, Zhengbo Luo, Filip Lux, Sokratis Makrogiannis, Dominik Müller, Young-tack Oh, Subeen Pang, Constantin Pape, Gorkem Polat, Charlotte Rosalie Reed, Kanghyun Ryu, Tim Scherr, Vajira Thambawita, Haoyu Wang, Xinliang Wang, Kele Xu, Hung Yeh, Doyeob Yeo, Yixuan Yuan, Yan Zeng, Xin Zhao, Julian Abbing, Jannes Adam, Nagesh Adluru, Niklas Agethen, Salman Ahmed, Yasmina Al Khalil, Mireia Alenyà, Esa Alhoniemi, Chengyang An, Talha Anwar, Tewodros Weldebirhan Arega, Netanell Avisdris, Dogu Baran Aydogan, Yingbin Bai, Maria Baldeon Calisto, Berke Doga Basaran, Marcel Beetz, Cheng Bian, Hao Bian, Kevin Blansit, Louise Bloch, Robert Bohnsack, Sara Bosticardo, Jack Breen, Mikael Brudfors, Raphael Brüngel, Mariano Cabezas, Alberto Cacciola, Zhiwei Chen, Yucong Chen, Daniel Tianming Chen, Minjeong Cho, Min-Kook Choi, Chuantao Xie Chuantao Xie, Dana Cobzas, Julien Cohen-Adad, Jorge Corral Acero, Sujit Kumar Das, Marcela de Oliveira, Hanqiu Deng, Guiming Dong, Lars Doorenbos, Cory Efird, Sergio Escalera, Di Fan, Mehdi Fatan Serj, Alexandre Fenneteau, Lucas Fidon, Patryk Filipiak, René Finzel, Nuno R. Freitas, Christoph M. Friedrich, Mitchell Fulton, Finn Gaida, Francesco Galati, Christoforos Galazis, Chang Hee Gan, Zheyao Gao, Shengbo Gao, Matej Gazda, Beerend Gerats, Neil Getty, Adam Gibicar, Ryan Gifford, Sajan Gohil, Maria Grammatikopoulou, Daniel Grzech, Orhun Güley, Timo Günnemann, Chunxu Guo, Sylvain Guy, Heonjin Ha, Luyi Han, Il Song Han, Ali Hatamizadeh, Tian He, Jimin Heo, Sebastian Hitziger, SeulGi Hong, Seungbum Hong, Rian Huang, Ziyan Huang, Markus Huellebrand, Stephan Huschauer, Mustaffa Hussain, Tomoo Inubushi, Ece Isik Polat, Mojtaba Jafaritadi, SeongHun Jeong, Bailiang Jian, Yuanhong Jiang, Zhifan Jiang, Yueming Jin, Smriti Joshi, Abdolrahim Kadkhodamohammadi, Reda Abdellah Kamraoui, Inha Kang, Junghwa Kang, Davood Karimi, April Khademi, Muhammad Irfan Khan, Suleiman A. Khan, Rishab Khantwal, Kwang-Ju Kim, Timothy Kline, Satoshi Kondo, Elina Kontio, Adrian Krenzer, Artem Kroviakov, Hugo Kuijf, Satyadwyoom Kumar, Francesco La Rosa, Abhi Lad, Doohee Lee, Minho Lee, Chiara Lena, Hao Li, Ling Li, Xingyu Li, Fuyuan Liao, Kuanlun Liao, Arlindo Limede Oliveira, Chaonan Lin, Shan Lin, Akis Linardos, Marius George Linguraru, Han Liu, Tao Liu, Di Liu, Yanling Liu, João Lourenço-Silva, Jingpei Lu, Jiangshan Lu, Imanol Luengo, Christina B. Lund, Huan Minh Luu, Yi Lv, Uzay Macar, Leon Maechler, Sina Mansour L., Kenji Marshall, Moona Mazher, Richard McKinley, Alfonso Medela, Felix Meissen, Mingyuan Meng, Dylan Miller, Seyed Hossein Mirjahanmardi, Arnab Mishra, Samir Mitha, Hassan Mohy-ud-Din, Tony Chi Wing Mok, Gowtham Krishnan Murugesan, Enamundram Naga Karthik, Sahil Nalawade, Jakub Nalepa, Mohamed Naser, Ramin Nateghi, Hammad Naveed, Quang-Minh Nguyen, Cuong Nguyen Quoc, Brennan Nichyporuk, Bruno Oliveira, David Owen, Jimut Bahan Pal, Junwen Pan, Wentao Pan, Winnie Pang, Bogyu Park, Vivek Pawar, Kamlesh Pawar, Michael Peven, Lena Philipp, Tomasz Pieciak, Szymon Plotka, Marcel Plutat, Fattaneh Pourakpour, Domen Preložnik, Kumaradevan Punithakumar, Abdul Qayyum, Sandro Queirós, Arman Rahmim, Salar Razavi, Jintao Ren, Mina Rezaei, Jonathan Adam Rico, ZunHyan Rieu, Markus Rink, Johannes Roth, Yusely Ruiz-Gonzalez, Numan Saeed, Anindo Saha, Mostafa Salem, Ricardo Sanchez-Matilla, Kurt Schilling, Wei Shao, Zhiqiang Shen, Ruize Shi, Pengcheng Shi, Daniel Sobotka, Théodore Soulier, Bella Specktor Fadida, Danail Stoyanov, Timothy Sum Hon Mun, Xiaowu Sun, Rong Tao, Franz Thaler, Antoine Théberge, Felix Thielke, Helena Torres, Kareem A. Wahid, Jiacheng Wang, Yifei Wang, Wei Wang, Xiong Wang, Jianhui Wen, Ning Wen, Marek Wodzinski, Ye Wu, Fangfang Xia, Tianqi Xiang, Chen Xiaofei, Lizhan Xu, Tingting Xue, Yuxuan Yang, Lin Yang, Kai Yao, Huifeng Yao, Amirsaeed Yazdani, Michael Yip, Hwanseung Yoo, Fereshteh Yousefirizi, Shunkai Yu, Lei Yu, Jonathan Zamora, Ramy Ashraf Zeineldin, Dewen Zeng, Jianpeng Zhang, Bokai Zhang, Jiapeng Zhang, Fan Zhang, Huahong Zhang, Zhongchen Zhao, Zixuan Zhao, Jiachen Zhao, Can Zhao, Qingshuo Zheng, Yuheng Zhi, Ziqi Zhou, Baosheng Zou, Klaus Maier-Hein, Paul F. Jäger, Annette Kopp-Schneider, Lena Maier-Hein
Of these, 84% were based on standard architectures.
no code implementations • 13 Dec 2022 • Pietro Mascagni, Deepak Alapatt, Alfonso Lapergola, Armine Vardazaryan, Jean-Paul Mazellier, Bernard Dallemagne, Didier Mutter, Nicolas Padoy
Artificial intelligence is set to be deployed in operating rooms to improve surgical care.
1 code implementation • 8 Dec 2022 • Aditya Murali, Deepak Alapatt, Pietro Mascagni, Armine Vardazaryan, Alain Garcia, Nariaki Okamoto, Didier Mutter, Nicolas Padoy
Assessing the critical view of safety in laparoscopic cholecystectomy requires accurate identification and localization of key anatomical structures, reasoning about their geometric relationships to one another, and determining the quality of their exposure.
1 code implementation • 30 Nov 2022 • Saurav Sharma, Chinedu Innocent Nwoye, Didier Mutter, Nicolas Padoy
Focusing more on the verbs, our RiT explores the connectedness of current and past frames to learn temporal attention-based features for enhanced triplet recognition.
Ranked #2 on Action Triplet Recognition on CholecT45 (cross-val)
1 code implementation • 1 Jul 2022 • Sanat Ramesh, Vinkle Srivastav, Deepak Alapatt, Tong Yu, Aditya Murali, Luca Sestini, Chinedu Innocent Nwoye, Idris Hamoud, Saurav Sharma, Antoine Fleurentin, Georgios Exarchakis, Alexandros Karargyris, Nicolas Padoy
Correct transfer of these methods to surgery, as described and conducted in this work, leads to substantial performance gains over generic uses of SSL - up to 7. 4% on phase recognition and 20% on tool presence detection - as well as state-of-the-art semi-supervised phase recognition approaches by up to 14%.
Ranked #1 on Semantic Segmentation on Endoscapes
8 code implementations • 11 Apr 2022 • Chinedu Innocent Nwoye, Nicolas Padoy
We also develop a metrics library, ivtmetrics, for model evaluation on surgical triplets.
Ranked #1 on Action Triplet Recognition on CholecT45
6 code implementations • 10 Apr 2022 • Chinedu Innocent Nwoye, Deepak Alapatt, Tong Yu, Armine Vardazaryan, Fangfang Xia, Zixuan Zhao, Tong Xia, Fucang Jia, Yuxuan Yang, Hao Wang, Derong Yu, Guoyan Zheng, Xiaotian Duan, Neil Getty, Ricardo Sanchez-Matilla, Maria Robu, Li Zhang, Huabin Chen, Jiacheng Wang, Liansheng Wang, Bokai Zhang, Beerend Gerats, Sista Raviteja, Rachana Sathish, Rong Tao, Satoshi Kondo, Winnie Pang, Hongliang Ren, Julian Ronald Abbing, Mohammad Hasan Sarhan, Sebastian Bodenstedt, Nithya Bhasker, Bruno Oliveira, Helena R. Torres, Li Ling, Finn Gaida, Tobias Czempiel, João L. Vilaça, Pedro Morais, Jaime Fonseca, Ruby Mae Egging, Inge Nicole Wijma, Chen Qian, GuiBin Bian, Zhen Li, Velmurugan Balasubramanian, Debdoot Sheet, Imanol Luengo, Yuanbo Zhu, Shuai Ding, Jakob-Anton Aschenbrenner, Nicolas Elini van der Kar, Mengya Xu, Mobarakol Islam, Lalithkumar Seenivasan, Alexander Jenke, Danail Stoyanov, Didier Mutter, Pietro Mascagni, Barbara Seeliger, Cristians Gonzalez, Nicolas Padoy
In this paper, we present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
Ranked #1 on Action Triplet Recognition on CholecT50 (Challenge) (using extra training data)
no code implementations • 14 Mar 2022 • Hasan Kassem, Deepak Alapatt, Pietro Mascagni, AI4SafeChole Consortium, Alexandros Karargyris, Nicolas Padoy
With these constraints in mind, we propose FedCy, a federated semi-supervised learning (FSSL) method that combines FL and self-supervised learning to exploit a decentralized dataset of both labeled and unlabeled videos, thereby improving performance on the task of surgical phase recognition.
no code implementations • 8 Mar 2022 • Tong Yu, Pietro Mascagni, Juan Verde, Jacques Marescaux, Didier Mutter, Nicolas Padoy
Searching through large volumes of medical data to retrieve relevant information is a challenging yet crucial task for clinical care.
no code implementations • 16 Feb 2022 • Luca Sestini, Benoit Rosa, Elena De Momi, Giancarlo Ferrigno, Nicolas Padoy
We then use the obtained instrument masks as pseudo-labels in order to train a per-frame segmentation model; to this aim, we develop a learning-from-noisy-labels architecture, designed to extract a clean supervision signal from these pseudo-labels, leveraging their peculiar noise properties.
no code implementations • 27 Dec 2021 • Deepak Alapatt, Pietro Mascagni, Armine Vardazaryan, Alain Garcia, Nariaki Okamoto, Didier Mutter, Jacques Marescaux, Guido Costamagna, Bernard Dallemagne, Nicolas Padoy
A major obstacle to building models for effective semantic segmentation, and particularly video semantic segmentation, is a lack of large and well annotated datasets.
Ranked #2 on Semantic Segmentation on Endoscapes
no code implementations • 21 Oct 2021 • Imanol Luengo, Maria Grammatikopoulou, Rahim Mohammadi, Chris Walsh, Chinedu Innocent Nwoye, Deepak Alapatt, Nicolas Padoy, Zhen-Liang Ni, Chen-Chen Fan, Gui-Bin Bian, Zeng-Guang Hou, Heonjin Ha, Jiacheng Wang, Haojie Wang, Dong Guo, Lu Wang, Guotai Wang, Mobarakol Islam, Bharat Giddwani, Ren Hongliang, Theodoros Pissas, Claudio Ravasio, Martin Huber, Jeremy Birch, Joan M. Nunez Do Rio, Lyndon Da Cruz, Christos Bergeles, Hongyu Chen, Fucang Jia, Nikhil KumarTomar, Debesh Jha, Michael A. Riegler, Pal Halvorsen, Sophia Bano, Uddhav Vaghela, Jianyuan Hong, Haili Ye, Feihong Huang, Da-Han Wang, Danail Stoyanov
In 2020, we released pixel-wise semantic annotations for anatomy and instruments for 4670 images sampled from 25 videos of the CATARACTS training set.
no code implementations • 30 Sep 2021 • Martin Wagner, Beat-Peter Müller-Stich, Anna Kisilenko, Duc Tran, Patrick Heger, Lars Mündermann, David M Lubotsky, Benjamin Müller, Tornike Davitashvili, Manuela Capek, Annika Reinke, Tong Yu, Armine Vardazaryan, Chinedu Innocent Nwoye, Nicolas Padoy, Xinyang Liu, Eung-Joo Lee, Constantin Disch, Hans Meine, Tong Xia, Fucang Jia, Satoshi Kondo, Wolfgang Reiter, Yueming Jin, Yonghao Long, Meirui Jiang, Qi Dou, Pheng Ann Heng, Isabell Twick, Kadir Kirtac, Enes Hosgor, Jon Lindström Bolmgren, Michael Stenzel, Björn von Siemens, Hannes G. Kenngott, Felix Nickel, Moritz von Frankenberg, Franziska Mathis-Ullrich, Lena Maier-Hein, Stefanie Speidel, Sebastian Bodenstedt
PURPOSE: Surgical workflow and skill analysis are key technologies for the next generation of cognitive surgical assistance systems.
Ranked #1 on Surgical phase recognition on HeiChole Benchmark
1 code implementation • 29 Sep 2021 • Alexandros Karargyris, Renato Umeton, Micah J. Sheller, Alejandro Aristizabal, Johnu George, Srini Bala, Daniel J. Beutel, Victor Bittorf, Akshay Chaudhari, Alexander Chowdhury, Cody Coleman, Bala Desinghu, Gregory Diamos, Debo Dutta, Diane Feddema, Grigori Fursin, Junyi Guo, Xinyuan Huang, David Kanter, Satyananda Kashyap, Nicholas Lane, Indranil Mallick, Pietro Mascagni, Virendra Mehta, Vivek Natarajan, Nikola Nikolov, Nicolas Padoy, Gennady Pekhimenko, Vijay Janapa Reddi, G Anthony Reina, Pablo Ribalta, Jacob Rosenthal, Abhishek Singh, Jayaraman J. Thiagarajan, Anna Wuest, Maria Xenochristou, Daguang Xu, Poonam Yadav, Michael Rosenthal, Massimo Loda, Jason M. Johnson, Peter Mattson
Medical AI has tremendous potential to advance healthcare by supporting the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving provider and patient experience.
8 code implementations • 7 Sep 2021 • Chinedu Innocent Nwoye, Tong Yu, Cristians Gonzalez, Barbara Seeliger, Pietro Mascagni, Didier Mutter, Jacques Marescaux, Nicolas Padoy
To achieve this task, we introduce our new model, the Rendezvous (RDV), which recognizes triplets directly from surgical videos by leveraging attention at two different levels.
Ranked #1 on Action Triplet Recognition on CholecT50
1 code implementation • 26 Aug 2021 • Vinkle Srivastav, Afshin Gangi, Nicolas Padoy
Second, to address the domain shift and the lack of annotations, we propose a novel unsupervised domain adaptation method, called AdaptOR, to adapt a model from an in-the-wild labeled source domain to a statistically different unlabeled target domain.
1 code implementation • 21 Jun 2021 • Pietro Mascagni, Deepak Alapatt, Alain Garcia, Nariaki Okamoto, Armine Vardazaryan, Guido Costamagna, Bernard Dallemagne, Nicolas Padoy
Minimally invasive image-guided surgery heavily relies on vision.
no code implementations • 6 Apr 2021 • Pietro Mascagni, Maria Rita Rodriguez-Luna, Takeshi Urade, Emanuele Felli, Patrick Pessaux, Didier Mutter, Jacques Marescaux, Guido Costamagna, Bernard Dallemagne, Nicolas Padoy
The primary endpoint was to compare the rate of CVS achievement between LCs performed in the year before and the year after the 5-second rule.
no code implementations • 28 Feb 2021 • Luca Sestini, Benoit Rosa, Elena De Momi, Giancarlo Ferrigno, Nicolas Padoy
3-D pose estimation of instruments is a crucial step towards automatic scene understanding in robotic minimally invasive surgery.
no code implementations • 24 Feb 2021 • Sanat Ramesh, Diego Dall'Alba, Cristians Gonzalez, Tong Yu, Pietro Mascagni, Didier Mutter, Jacques Marescaux, Paolo Fiorini, Nicolas Padoy
Conclusion: In this work, we present a multi-task multi-stage temporal convolutional network for surgical activity recognition, which shows improved results compared to single-task models on the Bypass40 gastric bypass dataset with multi-level annotations.
no code implementations • 30 Oct 2020 • Lena Maier-Hein, Matthias Eisenmann, Duygu Sarikaya, Keno März, Toby Collins, Anand Malpani, Johannes Fallert, Hubertus Feussner, Stamatia Giannarou, Pietro Mascagni, Hirenkumar Nakawala, Adrian Park, Carla Pugh, Danail Stoyanov, Swaroop S. Vedula, Kevin Cleary, Gabor Fichtinger, Germain Forestier, Bernard Gibaud, Teodor Grantcharov, Makoto Hashizume, Doreen Heckmann-Nötzel, Hannes G. Kenngott, Ron Kikinis, Lars Mündermann, Nassir Navab, Sinan Onogur, Raphael Sznitman, Russell H. Taylor, Minu D. Tizabi, Martin Wagner, Gregory D. Hager, Thomas Neumuth, Nicolas Padoy, Justin Collins, Ines Gockel, Jan Goedeke, Daniel A. Hashimoto, Luc Joyeux, Kyle Lam, Daniel R. Leff, Amin Madani, Hani J. Marcus, Ozanan Meireles, Alexander Seitel, Dogu Teber, Frank Ückert, Beat P. Müller-Stich, Pierre Jannin, Stefanie Speidel
We further complement this technical perspective with (4) a review of currently available SDS products and the translational progress from academia and (5) a roadmap for faster clinical translation and exploitation of the full potential of SDS, based on an international multi-round Delphi process.
no code implementations • 30 Sep 2020 • Tong Yu, Nicolas Padoy
This paper tackles a new problem in computer vision: mid-stream video-to-video retrieval.
1 code implementation • 28 Sep 2020 • Deepak Alapatt, Pietro Mascagni, Vinkle Srivastav, Nicolas Padoy
Deep neural networks power most recent successes of artificial intelligence, spanning from self-driving cars to computer aided diagnosis in radiology and pathology.
1 code implementation • 16 Jul 2020 • Vinkle Srivastav, Afshin Gangi, Nicolas Padoy
Human pose estimation (HPE) is a key building block for developing AI-based context-aware systems inside the operating room (OR).
1 code implementation • 16 Jul 2020 • Vinkle Srivastav, Afshin Gangi, Nicolas Padoy
2D/3D human pose estimation is needed to develop novel intelligent tools for the operating room that can analyze and support the clinical activities.
4 code implementations • 10 Jul 2020 • Chinedu Innocent Nwoye, Cristians Gonzalez, Tong Yu, Pietro Mascagni, Didier Mutter, Jacques Marescaux, Nicolas Padoy
Recognition of surgical activity is an essential component to develop context-aware decision support for the operating room.
Ranked #1 on Action Triplet Recognition on CholecT40
no code implementations • 20 Oct 2019 • Tom Vercauteren, Mathias Unberath, Nicolas Padoy, Nassir Navab
Data-driven computational approaches have evolved to enable extraction of information from medical images with a reliability, accuracy and speed which is already transforming their interpretation and exploitation in clinical practice.
1 code implementation • 4 Dec 2018 • Chinedu Innocent Nwoye, Didier Mutter, Jacques Marescaux, Nicolas Padoy
Results: We build a baseline tracker on top of the CNN model and demonstrate that our approach based on the ConvLSTM outperforms the baseline in tool presence detection, spatial localization, and motion tracking by over 5. 0%, 13. 9%, and 12. 6%, respectively.
Ranked #2 on Surgical tool detection on Cholec80
1 code implementation • 30 Nov 2018 • Tong Yu, Didier Mutter, Jacques Marescaux, Nicolas Padoy
Vision algorithms capable of interpreting scenes from a real-time video stream are necessary for computer-assisted surgery systems to achieve context-aware behavior.
no code implementations • 29 Nov 2018 • Thibaut Issenhuth, Vinkle Srivastav, Afshin Gangi, Nicolas Padoy
Methods: We propose a comparison of 6 state-of-the-art face detectors on clinical data using Multi-View Operating Room Faces (MVOR-Faces), a dataset of operating room images capturing real surgical activities.
no code implementations • 28 Nov 2018 • Siddharth Kannan, Gaurav Yengera, Didier Mutter, Jacques Marescaux, Nicolas Padoy
This work presents a novel approach for the early recognition of the type of a laparoscopic surgery from its video.
1 code implementation • 24 Aug 2018 • Vinkle Srivastav, Thibaut Issenhuth, Abdolrahim Kadkhodamohammadi, Michel de Mathelin, Afshin Gangi, Nicolas Padoy
In this paper, we present the dataset, its annotations, as well as baseline results from several recent person detection and 2D/3D pose estimation methods.
1 code implementation • 14 Jun 2018 • Armine Vardazaryan, Didier Mutter, Jacques Marescaux, Nicolas Padoy
We propose a deep architecture, trained solely on image level annotations, that can be used for both tool presence detection and localization in surgical videos.
Ranked #4 on Surgical tool detection on Cholec80
no code implementations • 22 May 2018 • Gaurav Yengera, Didier Mutter, Jacques Marescaux, Nicolas Padoy
In this work, we propose a new self-supervised pre-training approach based on the prediction of remaining surgery duration (RSD) from laparoscopic videos.
2 code implementations • 27 Apr 2018 • Abdolrahim Kadkhodamohammadi, Nicolas Padoy
As 2D poses are collected at test time using a SV pose detector, which might generate inaccurate detections, we model its characteristics and incorporate this information during training.
1 code implementation • 9 Feb 2018 • Andru Putra Twinanda, Gaurav Yengera, Didier Mutter, Jacques Marescaux, Nicolas Padoy
In this paper, we propose a deep learning pipeline, referred to as RSDNet, which automatically estimates the remaining surgery duration (RSD) intraoperatively by using only visual information from laparoscopic videos.
1 code implementation • 25 Jan 2017 • Abdolrahim Kadkhodamohammadi, Afshin Gangi, Michel de Mathelin, Nicolas Padoy
In this paper, we propose an approach for multi-view 3D human pose estimation from RGB-D images and demonstrate the benefits of using the additional depth channel for pose refinement beyond its use for the generation of improved features.
3D Human Pose Estimation Multi-view 3D Human Pose Estimation
no code implementations • 27 Oct 2016 • Andru P. Twinanda, Didier Mutter, Jacques Marescaux, Michel de Mathelin, Nicolas Padoy
The tool presence detection challenge at M2CAI 2016 consists of identifying the presence/absence of seven surgical tools in the images of cholecystectomy videos.
no code implementations • 27 Oct 2016 • Andru P. Twinanda, Didier Mutter, Jacques Marescaux, Michel de Mathelin, Nicolas Padoy
On top of these architectures we propose to use two different approaches to enforce the temporal constraints of the surgical workflow: (1) HMM-based and (2) LSTM-based pipelines.
1 code implementation • 10 Feb 2016 • Abdolrahim Kadkhodamohammadi, Afshin Gangi, Michel de Mathelin, Nicolas Padoy
Proposed methods for the operating room (OR) rely either on foreground estimation using a multi-camera system, which is a challenge in real ORs due to color similarities and frequent illumination changes, or on wearable sensors or markers, which are invasive and therefore difficult to introduce in the room.
9 code implementations • 9 Feb 2016 • Andru P. Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux, Michel de Mathelin, Nicolas Padoy
In the literature, two types of features are typically used to perform this task: visual features and tool usage signals.
Ranked #5 on Surgical tool detection on Cholec80
Offline surgical phase recognition Online surgical phase recognition +2