Search Results for author: Nikhil Mehta

Found 34 papers, 8 papers with code

Tackling Fake News Detection by Continually Improving Social Context Representations using Graph Neural Networks

1 code implementation ACL 2022 Nikhil Mehta, Maria Pacheco, Dan Goldwasser

We view fake news detection as reasoning over the relations between sources, articles they publish, and engaging users on social media in a graph framework.

Fake News Detection Misinformation

Tackling Fake News Detection by Interactively Learning Representations using Graph Neural Networks

no code implementations ACL (InterNLP) 2021 Nikhil Mehta, Dan Goldwasser

Easy access, variety of content, and fast widespread interactions are some of the reasons that have made social media increasingly popular in today’s society.

Fake News Detection Misinformation

Talking Point based Ideological Discourse Analysis in News Events

no code implementations10 Apr 2025 Nishanth Nakshatri, Nikhil Mehta, Siyi Liu, Sihao Chen, Daniel J. Hopkins, Dan Roth, Dan Goldwasser

Analyzing ideological discourse even in the age of LLMs remains a challenge, as these models often struggle to capture the key elements that shape real-world narratives.

Toward Holistic Evaluation of Recommender Systems Powered by Generative Models

no code implementations9 Apr 2025 Yashar Deldjoo, Nikhil Mehta, Maheswaran Sathiamoorthy, Shuai Zhang, Pablo Castells, Julian McAuley

First, we categorize the evaluation challenges of Gen-RecSys into two groups: (i) existing concerns that are exacerbated by generative outputs (e. g., bias, privacy) and (ii) entirely new risks (e. g., item hallucinations, contradictory explanations).

Bias Detection Recommendation Systems

Building a Mind Palace: Structuring Environment-Grounded Semantic Graphs for Effective Long Video Analysis with LLMs

no code implementations8 Jan 2025 Zeyi Huang, Yuyang Ji, Xiaofang Wang, Nikhil Mehta, Tong Xiao, DongHyun Lee, Sigmund Vanvalkenburgh, Shengxin Zha, Bolin Lai, Licheng Yu, Ning Zhang, Yong Jae Lee, Miao Liu

Long-form video understanding with Large Vision Language Models is challenged by the need to analyze temporally dispersed yet spatially concentrated key moments within limited context windows.

EgoSchema Object Tracking +1

STAR: A Simple Training-free Approach for Recommendations using Large Language Models

no code implementations21 Oct 2024 Dong-Ho Lee, Adam Kraft, Long Jin, Nikhil Mehta, Taibai Xu, Lichan Hong, Ed H. Chi, Xinyang Yi

In this paper, we propose a Simple Training-free Approach for Recommendation (STAR), a framework that utilizes LLMs and can be applied to various recommendation tasks without the need for fine-tuning, while maintaining high quality recommendation performance.

Recommendation Systems Retrieval

The Llama 3 Herd of Models

2 code implementations31 Jul 2024 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer Van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, WenWen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, Zhiyu Ma

This paper presents a new set of foundation models, called Llama 3.

answerability prediction Language Modeling +5

Improving Hyperparameter Optimization with Checkpointed Model Weights

1 code implementation26 Jun 2024 Nikhil Mehta, Jonathan Lorraine, Steve Masson, Ramanathan Arunachalam, Zaid Pervaiz Bhat, James Lucas, Arun George Zachariah

In this work, we propose an HPO method for neural networks using logged checkpoints of the trained weights to guide future hyperparameter selections.

Hyperparameter Optimization model

Using RL to Identify Divisive Perspectives Improves LLMs Abilities to Identify Communities on Social Media

no code implementations3 Jun 2024 Nikhil Mehta, Dan Goldwasser

The large scale usage of social media, combined with its significant impact, has made it increasingly important to understand it.

Community Detection

Assessing and Verifying Task Utility in LLM-Powered Applications

no code implementations3 May 2024 Negar Arabzadeh, Siqing Huo, Nikhil Mehta, Qinqyun Wu, Chi Wang, Ahmed Awadallah, Charles L. A. Clarke, Julia Kiseleva

The rapid development of Large Language Models (LLMs) has led to a surge in applications that facilitate collaboration among multiple agents, assisting humans in their daily tasks.

Math

Aligning Large Language Models with Recommendation Knowledge

no code implementations30 Mar 2024 Yuwei Cao, Nikhil Mehta, Xinyang Yi, Raghunandan Keshavan, Lukasz Heldt, Lichan Hong, Ed H. Chi, Maheswaran Sathiamoorthy

Operations such as Masked Item Modeling (MIM) and Bayesian Personalized Ranking (BPR) have found success in conventional recommender systems.

Attribute Recommendation Systems +1

HyperMix: Out-of-Distribution Detection and Classification in Few-Shot Settings

no code implementations22 Dec 2023 Nikhil Mehta, Kevin J Liang, Jing Huang, Fu-Jen Chu, Li Yin, Tal Hassner

Out-of-distribution (OOD) detection is an important topic for real-world machine learning systems, but settings with limited in-distribution samples have been underexplored.

Out-of-Distribution Detection Out of Distribution (OOD) Detection

Meta-Learned Attribute Self-Interaction Network for Continual and Generalized Zero-Shot Learning

no code implementations2 Dec 2023 Vinay K Verma, Nikhil Mehta, Kevin J Liang, Aakansha Mishra, Lawrence Carin

Zero-shot learning (ZSL) is a promising approach to generalizing a model to categories unseen during training by leveraging class attributes, but challenges remain.

Attribute Generalized Zero-Shot Learning +1

Interactively Learning Social Media Representations Improves News Source Factuality Detection

1 code implementation26 Sep 2023 Nikhil Mehta, Dan Goldwasser

The rise of social media has enabled the widespread propagation of fake news, text that is published with an intent to spread misinformation and sway beliefs.

Misinformation

An Interactive Framework for Profiling News Media Sources

no code implementations14 Sep 2023 Nikhil Mehta, Dan Goldwasser

The recent rise of social media has led to the spread of large amounts of fake and biased news, content published with the intent to sway beliefs.

Density Weighting for Multi-Interest Personalized Recommendation

no code implementations3 Aug 2023 Nikhil Mehta, Anima Singh, Xinyang Yi, Sagar Jain, Lichan Hong, Ed H. Chi

When the data distribution is highly skewed, the gains observed by learning multiple representations diminish since the model dominates on head items/interests, leading to poor performance on tail items.

Recommendation Systems

Better Generalization with Semantic IDs: A Case Study in Ranking for Recommendations

no code implementations13 Jun 2023 Anima Singh, Trung Vu, Nikhil Mehta, Raghunandan Keshavan, Maheswaran Sathiamoorthy, Yilin Zheng, Lichan Hong, Lukasz Heldt, Li Wei, Devansh Tandon, Ed H. Chi, Xinyang Yi

To strike a good balance of memorization and generalization, we propose to use Semantic IDs -- a compact discrete item representation learned from frozen content embeddings using RQ-VAE that captures the hierarchy of concepts in items -- as a replacement for random item ids.

Memorization Recommendation Systems

Do LLMs Understand User Preferences? Evaluating LLMs On User Rating Prediction

no code implementations10 May 2023 Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy, Lichan Hong, Ed Chi, Derek Zhiyuan Cheng

In this paper, we conduct a thorough examination of both CF and LLMs within the classic task of user rating prediction, which involves predicting a user's rating for a candidate item based on their past ratings.

Collaborative Filtering World Knowledge

Improving Grounded Language Understanding in a Collaborative Environment by Interacting with Agents Through Help Feedback

no code implementations21 Apr 2023 Nikhil Mehta, Milagro Teruel, Patricio Figueroa Sanz, Xin Deng, Ahmed Hassan Awadallah, Julia Kiseleva

We explore multiple types of help players can give to the AI to guide it and analyze the impact of this help in AI behavior, resulting in performance improvements.

AI Agent Minecraft

Pushing the Efficiency Limit Using Structured Sparse Convolutions

no code implementations23 Oct 2022 Vinay Kumar Verma, Nikhil Mehta, Shijing Si, Ricardo Henao, Lawrence Carin

Weight pruning is among the most popular approaches for compressing deep convolutional neural networks.

Pseudo-OOD training for robust language models

no code implementations17 Oct 2022 Dhanasekar Sundararaman, Nikhil Mehta, Lawrence Carin

The model is fine-tuned by introducing a new regularization loss that separates the embeddings of IND and OOD data, which leads to significant gains on the OOD prediction task during testing.

Out of Distribution (OOD) Detection

A two-step machine learning approach for crop disease detection: an application of GAN and UAV technology

no code implementations19 Sep 2021 Aaditya Prasad, Nikhil Mehta, Matthew Horak, Wan D. Bae

Two data-generators are also used to minimize class imbalance in the high-fidelity dataset and to produce low-fidelity data that is representative of UAV images.

BIG-bench Machine Learning

Efficient Feature Transformations for Discriminative and Generative Continual Learning

1 code implementation CVPR 2021 Vinay Kumar Verma, Kevin J Liang, Nikhil Mehta, Piyush Rai, Lawrence Carin

However, the growth in the number of additional parameters of many of these types of methods can be computationally expensive at larger scales, at times prohibitively so.

Continual Learning

Meta-Learned Attribute Self-Gating for Continual Generalized Zero-Shot Learning

no code implementations23 Feb 2021 Vinay Kumar Verma, Kevin Liang, Nikhil Mehta, Lawrence Carin

Zero-shot learning (ZSL) has been shown to be a promising approach to generalizing a model to categories unseen during training by leveraging class attributes, but challenges still remain.

Attribute Generalized Zero-Shot Learning +1

Counterfactual Representation Learning with Balancing Weights

no code implementations23 Oct 2020 Serge Assaad, Shuxi Zeng, Chenyang Tao, Shounak Datta, Nikhil Mehta, Ricardo Henao, Fan Li, Lawrence Carin

A key to causal inference with observational data is achieving balance in predictive features associated with each treatment type.

Causal Inference counterfactual +1

WAFFLe: Weight Anonymized Factorization for Federated Learning

no code implementations13 Aug 2020 Weituo Hao, Nikhil Mehta, Kevin J Liang, Pengyu Cheng, Mostafa El-Khamy, Lawrence Carin

Experiments on MNIST, FashionMNIST, and CIFAR-10 demonstrate WAFFLe's significant improvement to local test performance and fairness while simultaneously providing an extra layer of security.

Fairness Federated Learning

Continual Learning using a Bayesian Nonparametric Dictionary of Weight Factors

no code implementations21 Apr 2020 Nikhil Mehta, Kevin J Liang, Vinay K Verma, Lawrence Carin

Naively trained neural networks tend to experience catastrophic forgetting in sequential task settings, where data from previous tasks are unavailable.

Continual Learning Transfer Learning

Graph Representation Learning via Ladder Gamma Variational Autoencoders

1 code implementation3 Apr 2020 Arindam Sarkar, Nikhil Mehta, Piyush Rai

In addition to leveraging the representational power of multiple layers of stochastic variables via the ladder VAE architecture, our framework offers the following benefits: (1) Unlike existing ladder VAE architectures based on real-valued latent variables, the gamma-distributed latent variables naturally result in non-negativity and sparsity of the learned embeddings, and facilitate their direct interpretation as membership of nodes into (possibly multiple) communities/topics; (2) A novel recognition model for our gamma ladder VAE architecture allows fast inference of node embeddings; and (3) The framework also extends naturally to incorporate node side information (features and/or labels).

Graph Representation Learning Link Prediction

Survival Cluster Analysis

1 code implementation29 Feb 2020 Paidamoyo Chapfuwa, Chunyuan Li, Nikhil Mehta, Lawrence Carin, Ricardo Henao

As a result, there is an unmet need in survival analysis for identifying subpopulations with distinct risk profiles, while jointly accounting for accurate individualized time-to-event predictions.

Survival Analysis

Stochastic Blockmodels meet Graph Neural Networks

no code implementations Proceedings of the 36th International Conference on Machine Learning 2019 Nikhil Mehta, Lawrence Carin, Piyush Rai

Although we develop this framework for a particular type of SBM, namely the \emph{overlapping} stochastic blockmodel, the proposed framework can be adapted readily for other types of SBMs.

Link Prediction

Improving Natural Language Interaction with Robots Using Advice

1 code implementation NAACL 2019 Nikhil Mehta, Dan Goldwasser

Over the last few years, there has been growing interest in learning models for physically grounded language understanding tasks, such as the popular blocks world domain.

Deep Topic Models for Multi-label Learning

no code implementations13 Apr 2019 Rajat Panda, Ankit Pensia, Nikhil Mehta, Mingyuan Zhou, Piyush Rai

We present a probabilistic framework for multi-label learning based on a deep generative model for the binary label vector associated with each observation.

Multi-Label Learning Topic Models

Cannot find the paper you are looking for? You can Submit a new open access paper.