Search Results for author: Niklas Smedemark-Margulies

Found 8 papers, 3 papers with code

Stabilizing Subject Transfer in EEG Classification with Divergence Estimation

no code implementations12 Oct 2023 Niklas Smedemark-Margulies, Ye Wang, Toshiaki Koike-Akino, Jing Liu, Kieran Parsons, Yunus Bicer, Deniz Erdogmus

Classification models for electroencephalogram (EEG) data show a large decrease in performance when evaluated on unseen test sub jects.

EEG Subject Transfer

User Training with Error Augmentation for Electromyogram-based Gesture Classification

1 code implementation13 Sep 2023 Yunus Bicer, Niklas Smedemark-Margulies, Basak Celik, Elifnur Sunger, Ryan Orendorff, Stephanie Naufel, Tales Imbiriba, Deniz Erdoğmuş, Eugene Tunik, Mathew Yarossi

We designed and tested a system for real-time control of a user interface by extracting surface electromyographic (sEMG) activity from eight electrodes in a wrist-band configuration.

Gesture Recognition

A Multi-label Classification Approach to Increase Expressivity of EMG-based Gesture Recognition

no code implementations13 Sep 2023 Niklas Smedemark-Margulies, Yunus Bicer, Elifnur Sunger, Stephanie Naufel, Tales Imbiriba, Eugene Tunik, Deniz Erdoğmuş, Mathew Yarossi

Main Results: We found that a problem transformation approach using a parallel model architecture in combination with a non-linear classifier, along with restricted synthetic data generation, shows promise in increasing the expressivity of sEMG-based gestures with a short calibration time.

Gesture Recognition Multi-Label Classification +1

Recursive Estimation of User Intent from Noninvasive Electroencephalography using Discriminative Models

1 code implementation29 Oct 2022 Niklas Smedemark-Margulies, Basak Celik, Tales Imbiriba, Aziz Kocanaogullari, Deniz Erdogmus

We study the problem of inferring user intent from noninvasive electroencephalography (EEG) to restore communication for people with severe speech and physical impairments (SSPI).

EEG ERP

AutoTransfer: Subject Transfer Learning with Censored Representations on Biosignals Data

no code implementations17 Dec 2021 Niklas Smedemark-Margulies, Ye Wang, Toshiaki Koike-Akino, Deniz Erdogmus

We provide a regularization framework for subject transfer learning in which we seek to train an encoder and classifier to minimize classification loss, subject to a penalty measuring independence between the latent representation and the subject label.

EEG Subject Transfer +1

Generator Surgery for Compressed Sensing

no code implementations22 Feb 2021 Niklas Smedemark-Margulies, Jung Yeon Park, Max Daniels, Rose Yu, Jan-Willem van de Meent, Paul Hand

We introduce a method for achieving low representation error using generators as signal priors.

Fair and Useful Cohort Selection

no code implementations4 Sep 2020 Konstantina Bairaktari, Paul Langton, Huy L. Nguyen, Niklas Smedemark-Margulies, Jonathan Ullman

A challenge in fair algorithm design is that, while there are compelling notions of individual fairness, these notions typically do not satisfy desirable composition properties, and downstream applications based on fair classifiers might not preserve fairness.

Fairness

Cannot find the paper you are looking for? You can Submit a new open access paper.