no code implementations • 14 Mar 2025 • Hongkai Zheng, Wenda Chu, Bingliang Zhang, Zihui Wu, Austin Wang, Berthy T. Feng, Caifeng Zou, Yu Sun, Nikola Kovachki, Zachary E. Ross, Katherine L. Bouman, Yisong Yue
Plug-and-play diffusion priors (PnPDP) have emerged as a promising research direction for solving inverse problems.
1 code implementation • 13 Dec 2024 • Jean Kossaifi, Nikola Kovachki, Zongyi Li, David Pitt, Miguel Liu-Schiaffini, Robert Joseph George, Boris Bonev, Kamyar Azizzadenesheli, Julius Berner, Anima Anandkumar
We present NeuralOperator, an open-source Python library for operator learning.
no code implementations • 30 Sep 2024 • Hongkai Zheng, Wenda Chu, Austin Wang, Nikola Kovachki, Ricardo Baptista, Yisong Yue
This reliance poses a substantial limitation that restricts their use in a wide range of problems where such information is unavailable, such as in many scientific applications.
no code implementations • 29 Sep 2023 • Jean Kossaifi, Nikola Kovachki, Kamyar Azizzadenesheli, Anima Anandkumar
Our contributions are threefold: i) we enable parallelization over input samples with a novel multi-grid-based domain decomposition, ii) we represent the parameters of the model in a high-order latent subspace of the Fourier domain, through a global tensor factorization, resulting in an extreme reduction in the number of parameters and improved generalization, and iii) we propose architectural improvements to the backbone FNO.
no code implementations • 27 Sep 2023 • Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, Anima Anandkumar
Scientific discovery and engineering design are currently limited by the time and cost of physical experiments, selected mostly through trial-and-error and intuition that require deep domain expertise.
no code implementations • 17 Aug 2023 • Miguel Liu-Schiaffini, Clare E. Singer, Nikola Kovachki, Tapio Schneider, Kamyar Azizzadenesheli, Anima Anandkumar
Tipping points are abrupt, drastic, and often irreversible changes in the evolution of non-stationary and chaotic dynamical systems.
1 code implementation • 27 Jul 2023 • Renbo Tu, Colin White, Jean Kossaifi, Boris Bonev, Nikola Kovachki, Gennady Pekhimenko, Kamyar Azizzadenesheli, Anima Anandkumar
Neural operators, such as Fourier Neural Operators (FNO), form a principled approach for learning solution operators for PDEs and other mappings between function spaces.
2 code implementations • 21 Jun 2023 • Kaushik Bhattacharya, Nikola Kovachki, Aakila Rajan, Andrew M. Stuart, Margaret Trautner
However, a major challenge in data-driven learning approaches for this problem has remained unexplored: the impact of discontinuities and corner interfaces in the underlying material.
4 code implementations • 6 Nov 2021 • Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar Azizzadenesheli, Anima Anandkumar
Specifically, in PINO, we combine coarse-resolution training data with PDE constraints imposed at a higher resolution.
1 code implementation • 19 Aug 2021 • Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar
The classical development of neural networks has primarily focused on learning mappings between finite dimensional Euclidean spaces or finite sets.
2 code implementations • 13 Jun 2021 • Zongyi Li, Miguel Liu-Schiaffini, Nikola Kovachki, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar
Chaotic systems are notoriously challenging to predict because of their sensitivity to perturbations and errors due to time stepping.
19 code implementations • ICLR 2021 • Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar
The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces.
4 code implementations • NeurIPS 2020 • Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar
One of the main challenges in using deep learning-based methods for simulating physical systems and solving partial differential equations (PDEs) is formulating physics-based data in the desired structure for neural networks.
6 code implementations • ICLR Workshop DeepDiffEq 2019 • Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar
The classical development of neural networks has been primarily for mappings between a finite-dimensional Euclidean space and a set of classes, or between two finite-dimensional Euclidean spaces.