no code implementations • 5 Jul 2024 • Weiyi Xie, Nathalie Willems, Nikolas Lessmann, Tom Gibbons, Daniele De Massari
To overcome this limitation, we propose a novel semi-supervised segmentation method that leverages mostly unlabeled images and a small set of labeled images in training.
1 code implementation • 8 Nov 2023 • Gabriel Efrain Humpire-Mamani, Colin Jacobs, Mathias Prokop, Bram van Ginneken, Nikolas Lessmann
A base segmentation model (3D U-Net) was trained on a large and sparsely annotated dataset; its weights were used for transfer learning on four new down-stream segmentation tasks for which a fully annotated dataset was available.
no code implementations • 6 Sep 2023 • Gabriel Efrain Humpire Mamani, Nikolas Lessmann, Ernst Th. Scholten, Mathias Prokop, Colin Jacobs, Bram van Ginneken
Our end-to-end segmentation method was trained on 215 contrast-enhanced thoracic-abdominal CT scans, with half of these scans containing one or more abnormalities.
1 code implementation • 21 Jun 2023 • Jasper W. van der Graaf, Miranda L. van Hooff, Constantinus F. M. Buckens, Matthieu Rutten, Job L. C. van Susante, Robert Jan Kroeze, Marinus de Kleuver, Bram van Ginneken, Nikolas Lessmann
This paper presents a large publicly available multi-center lumbar spine magnetic resonance imaging (MRI) dataset with reference segmentations of vertebrae, intervertebral discs (IVDs), and spinal canal.
no code implementations • 8 Dec 2021 • Alessa Hering, Lasse Hansen, Tony C. W. Mok, Albert C. S. Chung, Hanna Siebert, Stephanie Häger, Annkristin Lange, Sven Kuckertz, Stefan Heldmann, Wei Shao, Sulaiman Vesal, Mirabela Rusu, Geoffrey Sonn, Théo Estienne, Maria Vakalopoulou, Luyi Han, Yunzhi Huang, Pew-Thian Yap, Mikael Brudfors, Yaël Balbastre, Samuel Joutard, Marc Modat, Gal Lifshitz, Dan Raviv, Jinxin Lv, Qiang Li, Vincent Jaouen, Dimitris Visvikis, Constance Fourcade, Mathieu Rubeaux, Wentao Pan, Zhe Xu, Bailiang Jian, Francesca De Benetti, Marek Wodzinski, Niklas Gunnarsson, Jens Sjölund, Daniel Grzech, Huaqi Qiu, Zeju Li, Alexander Thorley, Jinming Duan, Christoph Großbröhmer, Andrew Hoopes, Ingerid Reinertsen, Yiming Xiao, Bennett Landman, Yuankai Huo, Keelin Murphy, Nikolas Lessmann, Bram van Ginneken, Adrian V. Dalca, Mattias P. Heinrich
Image registration is a fundamental medical image analysis task, and a wide variety of approaches have been proposed.
no code implementations • 29 Nov 2020 • Alessa Hering, Stephanie Häger, Jan Moltz, Nikolas Lessmann, Stefan Heldmann, Bram van Ginneken
Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods.
no code implementations • 21 Sep 2020 • Coen de Vente, Luuk H. Boulogne, Kiran Vaidhya Venkadesh, Cheryl Sital, Nikolas Lessmann, Colin Jacobs, Clara I. Sánchez, Bram van Ginneken
This paper identifies a variety of components that increase the performance of CNN-based algorithms for COVID-19 grading from CT images.
1 code implementation • MIDL 2019 • Nikolas Lessmann, Bram van Ginneken
Random transformations are commonly used for augmentation of the training data with the goal of reducing the uniformity of the training samples.
2 code implementations • 24 Jan 2020 • Anjany Sekuboyina, Malek E. Husseini, Amirhossein Bayat, Maximilian Löffler, Hans Liebl, Hongwei Li, Giles Tetteh, Jan Kukačka, Christian Payer, Darko Štern, Martin Urschler, Maodong Chen, Dalong Cheng, Nikolas Lessmann, Yujin Hu, Tianfu Wang, Dong Yang, Daguang Xu, Felix Ambellan, Tamaz Amiranashvili, Moritz Ehlke, Hans Lamecker, Sebastian Lehnert, Marilia Lirio, Nicolás Pérez de Olaguer, Heiko Ramm, Manish Sahu, Alexander Tack, Stefan Zachow, Tao Jiang, Xinjun Ma, Christoph Angerman, Xin Wang, Kevin Brown, Alexandre Kirszenberg, Élodie Puybareau, Di Chen, Yiwei Bai, Brandon H. Rapazzo, Timyoas Yeah, Amber Zhang, Shangliang Xu, Feng Hou, Zhiqiang He, Chan Zeng, Zheng Xiangshang, Xu Liming, Tucker J. Netherton, Raymond P. Mumme, Laurence E. Court, Zixun Huang, Chenhang He, Li-Wen Wang, Sai Ho Ling, Lê Duy Huynh, Nicolas Boutry, Roman Jakubicek, Jiri Chmelik, Supriti Mulay, Mohanasankar Sivaprakasam, Johannes C. Paetzold, Suprosanna Shit, Ivan Ezhov, Benedikt Wiestler, Ben Glocker, Alexander Valentinitsch, Markus Rempfler, Björn H. Menze, Jan S. Kirschke
Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel-level by a human-machine hybrid algorithm (https://osf. io/nqjyw/, https://osf. io/t98fz/).
no code implementations • 12 Feb 2019 • Bob D. de Vos, Jelmer M. Wolterink, Tim Leiner, Pim A. de Jong, Nikolas Lessmann, Ivana Isgum
To meet demands of the increasing interest in quantification of CAC, i. e. coronary calcium scoring, especially as an unrequested finding for screening and research, automatic methods have been proposed.
no code implementations • 4 Oct 2018 • Sanne G. M. van Velzen, Majd Zreik, Nikolas Lessmann, Max A. Viergever, Pim A. de Jong, Helena M. Verkooijen, Ivana Išgum
Chest CT scans made in lung cancer screening are suitable for identification of participants at risk of CVD.
1 code implementation • 12 Apr 2018 • Nikolas Lessmann, Bram van Ginneken, Pim A. de Jong, Ivana Išgum
Precise segmentation and anatomical identification of the vertebrae provides the basis for automatic analysis of the spine, such as detection of vertebral compression fractures or other abnormalities.
no code implementations • 8 Dec 2017 • Bob D. de Vos, Nikolas Lessmann, Pim A. de Jong, Max A. Viergever, Ivana Isgum
The results demonstrate that real-time quantification of CAC burden in chest CT without the need for segmentation of CAC is possible.
no code implementations • 24 Nov 2017 • Majd Zreik, Nikolas Lessmann, Robbert W. van Hamersvelt, Jelmer M. Wolterink, Michiel Voskuil, Max A. Viergever, Tim Leiner, Ivana Išgum
To identify patients with a functionally significant coronary artery stenosis, analysis is performed in several stages.
no code implementations • 1 Nov 2017 • Nikolas Lessmann, Bram van Ginneken, Majd Zreik, Pim A. de Jong, Bob D. de Vos, Max A. Viergever, Ivana Išgum
On soft filter reconstructions, the method achieved F1 scores of 0. 89, 0. 89, 0. 67, and 0. 55 for coronary artery, thoracic aorta, aortic valve and mitral valve calcifications, respectively.