2 code implementations • 28 Mar 2024 • Ezequiel de la Rosa, Mauricio Reyes, Sook-Lei Liew, Alexandre Hutton, Roland Wiest, Johannes Kaesmacher, Uta Hanning, Arsany Hakim, Richard Zubal, Waldo Valenzuela, David Robben, Diana M. Sima, Vincenzo Anania, Arne Brys, James A. Meakin, Anne Mickan, Gabriel Broocks, Christian Heitkamp, Shengbo Gao, Kongming Liang, Ziji Zhang, Md Mahfuzur Rahman Siddiquee, Andriy Myronenko, Pooya Ashtari, Sabine Van Huffel, Hyun-su Jeong, Chi-ho Yoon, Chulhong Kim, Jiayu Huo, Sebastien Ourselin, Rachel Sparks, Albert Clèrigues, Arnau Oliver, Xavier Lladó, Liam Chalcroft, Ioannis Pappas, Jeroen Bertels, Ewout Heylen, Juliette Moreau, Nima Hatami, Carole Frindel, Abdul Qayyum, Moona Mazher, Domenec Puig, Shao-Chieh Lin, Chun-Jung Juan, Tianxi Hu, Lyndon Boone, Maged Goubran, Yi-Jui Liu, Susanne Wegener, Florian Kofler, Ivan Ezhov, Suprosanna Shit, Moritz R. Hernandez Petzsche, Bjoern Menze, Jan S. Kirschke, Benedikt Wiestler
We address this gap by presenting a novel ensemble algorithm derived from the 2022 Ischemic Stroke Lesion Segmentation (ISLES) challenge.
no code implementations • 16 Mar 2023 • Nima Hatami, Laura Mechtouff, David Rousseau, Tae-Hee Cho, Omer Eker, Yves Berthezene, Carole Frindel
Patient outcome prediction is critical in management of ischemic stroke.
no code implementations • 23 Jan 2023 • Nima Hatami
Computational pathology tasks have some unique characterises such as multi-gigapixel images, tedious and frequently uncertain annotations, and unavailability of large number of cases [13].
no code implementations • 11 May 2022 • Nima Hatami, Tae-Hee Cho, Laura Mechtouff, Omer Faruk Eker, David Rousseau, Carole Frindel
For each MR image module, a dedicated network provides preliminary prediction of the clinical outcome using the modified Rankin scale (mRS).
no code implementations • 1 Apr 2021 • Nima Hatami, Mohsin Bilal, Nasir Rajpoot
In this paper, we propose a deep dictionary learning approach to solve the problem of tissue phenotyping in histology images.
no code implementations • 19 Jun 2018 • Nima Hatami, Michaël Sdika, Hélène Ratiney
Magnetic resonance spectroscopy (MRS) is an important technique in biomedical research and it has the unique capability to give a non-invasive access to the biochemical content (metabolites) of scanned organs.
no code implementations • 29 Mar 2018 • Nima Hatami, Yann Gavet, Johan Debayle
Time-Series Classification (TSC) has attracted a lot of attention in pattern recognition, because wide range of applications from different domains such as finance and health informatics deal with time-series signals.
1 code implementation • 2 Oct 2017 • Nima Hatami, Yann Gavet, Johan Debayle
While the majority of Time-Series Classification (TSC) literature is focused on 1D signals, this paper uses Recurrence Plots (RP) to transform time-series into 2D texture images and then take advantage of the deep CNN classifier.
no code implementations • 3 May 2016 • Nima Hatami, Michael Goldbaum
Artery and vein (AV) classification of retinal images is a key to necessary tasks, such as automated measurement of arteriolar-to-venular diameter ratio (AVR).
no code implementations • 14 Dec 2013 • Nima Hatami, Camelia Chira
Early classification of time-series data in a dynamic environment is a challenging problem of great importance in signal processing.
no code implementations • 14 Dec 2013 • Nima Hatami, Reza Ebrahimpour, Reza Ghaderi
Error Correcting Output Codes, ECOC, is an output representation method capable of discovering some of the errors produced in classification tasks.