no code implementations • 24 Oct 2024 • Alexander Meulemans, Seijin Kobayashi, Johannes von Oswald, Nino Scherrer, Eric Elmoznino, Blake Richards, Guillaume Lajoie, Blaise Agüera y Arcas, João Sacramento
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning.
no code implementations • 24 Jun 2024 • James Atwood, Nino Scherrer, Preethi Lahoti, Ananth Balashankar, Flavien Prost, Ahmad Beirami
Further, the `remediation toolkit' is incomplete for LM-based decision makers and little is understood about how to improve decision maker group fairness while maintaining classifier performance.
1 code implementation • 18 Apr 2024 • Bertie Vidgen, Adarsh Agrawal, Ahmed M. Ahmed, Victor Akinwande, Namir Al-Nuaimi, Najla Alfaraj, Elie Alhajjar, Lora Aroyo, Trupti Bavalatti, Max Bartolo, Borhane Blili-Hamelin, Kurt Bollacker, Rishi Bomassani, Marisa Ferrara Boston, Siméon Campos, Kal Chakra, Canyu Chen, Cody Coleman, Zacharie Delpierre Coudert, Leon Derczynski, Debojyoti Dutta, Ian Eisenberg, James Ezick, Heather Frase, Brian Fuller, Ram Gandikota, Agasthya Gangavarapu, Ananya Gangavarapu, James Gealy, Rajat Ghosh, James Goel, Usman Gohar, Sujata Goswami, Scott A. Hale, Wiebke Hutiri, Joseph Marvin Imperial, Surgan Jandial, Nick Judd, Felix Juefei-Xu, Foutse khomh, Bhavya Kailkhura, Hannah Rose Kirk, Kevin Klyman, Chris Knotz, Michael Kuchnik, Shachi H. Kumar, Srijan Kumar, Chris Lengerich, Bo Li, Zeyi Liao, Eileen Peters Long, Victor Lu, Sarah Luger, Yifan Mai, Priyanka Mary Mammen, Kelvin Manyeki, Sean McGregor, Virendra Mehta, Shafee Mohammed, Emanuel Moss, Lama Nachman, Dinesh Jinenhally Naganna, Amin Nikanjam, Besmira Nushi, Luis Oala, Iftach Orr, Alicia Parrish, Cigdem Patlak, William Pietri, Forough Poursabzi-Sangdeh, Eleonora Presani, Fabrizio Puletti, Paul Röttger, Saurav Sahay, Tim Santos, Nino Scherrer, Alice Schoenauer Sebag, Patrick Schramowski, Abolfazl Shahbazi, Vin Sharma, Xudong Shen, Vamsi Sistla, Leonard Tang, Davide Testuggine, Vithursan Thangarasa, Elizabeth Anne Watkins, Rebecca Weiss, Chris Welty, Tyler Wilbers, Adina Williams, Carole-Jean Wu, Poonam Yadav, Xianjun Yang, Yi Zeng, Wenhui Zhang, Fedor Zhdanov, Jiacheng Zhu, Percy Liang, Peter Mattson, Joaquin Vanschoren
We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0. 5 benchmark.
2 code implementations • 20 Nov 2023 • Pranab Islam, Anand Kannappan, Douwe Kiela, Rebecca Qian, Nino Scherrer, Bertie Vidgen
We test 16 state of the art model configurations (including GPT-4-Turbo, Llama2 and Claude2, with vector stores and long context prompts) on a sample of 150 cases from FinanceBench, and manually review their answers (n=2, 400).
no code implementations • 14 Nov 2023 • Bertie Vidgen, Nino Scherrer, Hannah Rose Kirk, Rebecca Qian, Anand Kannappan, Scott A. Hale, Paul Röttger
While some of the models do not give a single unsafe response, most give unsafe responses to more than 20% of the prompts, with over 50% unsafe responses in the extreme.
no code implementations • 11 Sep 2023 • Johannes von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agüera y Arcas, Max Vladymyrov, Razvan Pascanu, João Sacramento
Some autoregressive models exhibit in-context learning capabilities: being able to learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so.
1 code implementation • NeurIPS 2023 • Nino Scherrer, Claudia Shi, Amir Feder, David M. Blei
(2) We apply this method to study what moral beliefs are encoded in different LLMs, especially in ambiguous cases where the right choice is not obvious.
no code implementations • NeurIPS 2023 • Mateusz Olko, Michał Zając, Aleksandra Nowak, Nino Scherrer, Yashas Annadani, Stefan Bauer, Łukasz Kuciński, Piotr Miłoś
In this work, we propose a novel Gradient-based Intervention Targeting method, abbreviated GIT, that 'trusts' the gradient estimator of a gradient-based causal discovery framework to provide signals for the intervention acquisition function.
3 code implementations • 7 Nov 2022 • Amin Abyaneh, Nino Scherrer, Patrick Schwab, Stefan Bauer, Bernhard Schölkopf, Arash Mehrjou
We propose FedCDI, a federated framework for inferring causal structures from distributed data containing interventional samples.
no code implementations • 9 Jun 2022 • Nino Scherrer, Anirudh Goyal, Stefan Bauer, Yoshua Bengio, Nan Rosemary Ke
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes and offer robust generalization.
1 code implementation • 6 Sep 2021 • Nino Scherrer, Olexa Bilaniuk, Yashas Annadani, Anirudh Goyal, Patrick Schwab, Bernhard Schölkopf, Michael C. Mozer, Yoshua Bengio, Stefan Bauer, Nan Rosemary Ke
Discovering causal structures from data is a challenging inference problem of fundamental importance in all areas of science.
1 code implementation • 14 Jun 2021 • Yashas Annadani, Jonas Rothfuss, Alexandre Lacoste, Nino Scherrer, Anirudh Goyal, Yoshua Bengio, Stefan Bauer
However, a crucial aspect to acting intelligently upon the knowledge about causal structure which has been inferred from finite data demands reasoning about its uncertainty.