Search Results for author: Nivranshu Pasricha

Found 7 papers, 2 papers with code

NUIG-DSI at the WebNLG+ challenge: Leveraging Transfer Learning for RDF-to-text generation

no code implementations ACL (WebNLG, INLG) 2020 Nivranshu Pasricha, Mihael Arcan, Paul Buitelaar

This paper describes the system submitted by NUIG-DSI to the WebNLG+ challenge 2020 in the RDF-to-text generation task for the English language.

Text Generation Transfer Learning

Utilising Knowledge Graph Embeddings for Data-to-Text Generation

no code implementations ACL (WebNLG, INLG) 2020 Nivranshu Pasricha, Mihael Arcan, Paul Buitelaar

Data-to-text generation has recently seen a move away from modular and pipeline architectures towards end-to-end architectures based on neural networks.

Data-to-Text Generation Knowledge Graph Embeddings

NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation

1 code implementation6 Dec 2021 Kaustubh D. Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abinaya Mahendiran, Simon Mille, Ashish Srivastava, Samson Tan, Tongshuang Wu, Jascha Sohl-Dickstein, Jinho D. Choi, Eduard Hovy, Ondrej Dusek, Sebastian Ruder, Sajant Anand, Nagender Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Connor Boyle, Caroline Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile Chapuis, Wanxiang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cornell, Gautier Dagan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra Dubey, Tatiana Ekeinhor, Marco Di Giovanni, Rishabh Gupta, Louanes Hamla, Sang Han, Fabrice Harel-Canada, Antoine Honore, Ishan Jindal, Przemyslaw K. Joniak, Denis Kleyko, Venelin Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan Lee, Corey James Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko, Vukosi Marivate, Gerard de Melo, Simon Meoni, Maxime Meyer, Afnan Mir, Nafise Sadat Moosavi, Niklas Muennighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria Obedkova, Priti Oli, Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicolas Roberts, Juan Diego Rodriguez, Claude Roux, Vasconcellos P. H. S., Ananya B. Sai, Robin M. Schmidt, Thomas Scialom, Tshephisho Sefara, Saqib N. Shamsi, Xudong Shen, Haoyue Shi, Yiwen Shi, Anna Shvets, Nick Siegel, Damien Sileo, Jamie Simon, Chandan Singh, Roman Sitelew, Priyank Soni, Taylor Sorensen, William Soto, Aman Srivastava, KV Aditya Srivatsa, Tony Sun, Mukund Varma T, A Tabassum, Fiona Anting Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn, Athena Wang, Zijian Wang, Gloria Wang, Zijie J. Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata, Xinyi Wu, Witold Wydmański, Tianbao Xie, Usama Yaseen, M. Yee, Jing Zhang, Yue Zhang

Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on.

Data Augmentation

Detecting Bot Behaviour in Social Media using Digital DNA Compression

1 code implementation 27th Irish Conference on Artificial Intelligence and Cognitive Science, 2019 2019 Nivranshu Pasricha, Conor Hayes

In our approach, we employ a lossless compression algorithm on these Digital DNA sequences and use the compression statistics as a measure of predictability in the behaviour of a group of Twitter accounts.

Twitter Bot Detection

Cannot find the paper you are looking for? You can Submit a new open access paper.