Search Results for author: Noah Maul

Found 11 papers, 2 papers with code

On the Influence of Smoothness Constraints in Computed Tomography Motion Compensation

no code implementations29 May 2024 Mareike Thies, Fabian Wagner, Noah Maul, Siyuan Mei, Mingxuan Gu, Laura Pfaff, Nastassia Vysotskaya, Haijun Yu, Andreas Maier

This study analyzes the influence of a spline-based motion model within an existing rigid motion compensation algorithm for cone-beam CT on the recoverable motion frequencies.

Anatomy Computed Tomography (CT) +1

Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction

no code implementations4 Mar 2024 Noah Maul, Annette Birkhold, Fabian Wagner, Mareike Thies, Maximilian Rohleder, Philipp Berg, Markus Kowarschik, Andreas Maier

In our work, we implicitly include this information in a neural network-based model that is trained on a dataset of image-based blood flow simulations.

Anatomy

Geometric Constraints Enable Self-Supervised Sinogram Inpainting in Sparse-View Tomography

no code implementations13 Feb 2023 Fabian Wagner, Mareike Thies, Noah Maul, Laura Pfaff, Oliver Aust, Sabrina Pechmann, Christopher Syben, Andreas Maier

By reconstructing independent stacks of projection data, a self-supervised loss is calculated in the CT image domain and used to directly optimize projection image intensities to match the missing tomographic views constrained by the projection geometry.

Computed Tomography (CT) CT Reconstruction +1

Optimizing CT Scan Geometries With and Without Gradients

no code implementations13 Feb 2023 Mareike Thies, Fabian Wagner, Noah Maul, Laura Pfaff, Linda-Sophie Schneider, Christopher Syben, Andreas Maier

In computed tomography (CT), the projection geometry used for data acquisition needs to be known precisely to obtain a clear reconstructed image.

Computed Tomography (CT) Motion Compensation

On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT Setting

1 code implementation2 Nov 2022 Fabian Wagner, Mareike Thies, Laura Pfaff, Oliver Aust, Sabrina Pechmann, Daniela Weidner, Noah Maul, Maximilian Rohleder, Mingxuan Gu, Jonas Utz, Felix Denzinger, Andreas Maier

In this work, we present an end-to-end trainable CT reconstruction pipeline that contains denoising operators in both the projection and the image domain and that are optimized simultaneously without requiring ground-truth high-dose CT data.

Computed Tomography (CT) CT Reconstruction +2

Trainable Joint Bilateral Filters for Enhanced Prediction Stability in Low-dose CT

no code implementations15 Jul 2022 Fabian Wagner, Mareike Thies, Felix Denzinger, Mingxuan Gu, Mayank Patwari, Stefan Ploner, Noah Maul, Laura Pfaff, Yixing Huang, Andreas Maier

Low-dose computed tomography (CT) denoising algorithms aim to enable reduced patient dose in routine CT acquisitions while maintaining high image quality.

Computed Tomography (CT) Denoising

Cannot find the paper you are looking for? You can Submit a new open access paper.