Search Results for author: Nojan Sheybani

Found 6 papers, 1 papers with code

Robust and Secure Code Watermarking for Large Language Models via ML/Crypto Codesign

no code implementations4 Feb 2025 Ruisi Zhang, Neusha Javidnia, Nojan Sheybani, Farinaz Koushanfar

This paper introduces RoSeMary, the first-of-its-kind ML/Crypto codesign watermarking framework that regulates LLM-generated code to avoid intellectual property rights violations and inappropriate misuse in software development.

LiveTune: Dynamic Parameter Tuning for Feedback-Driven Optimization

1 code implementation28 Nov 2023 Soheil Zibakhsh Shabgahi, Nojan Sheybani, Aiden Tabrizi, Farinaz Koushanfar

Extensive evaluations of our framework on standard machine learning training pipelines show saving up to 60 seconds and 5. 4 Kilojoules of energy per hyperparameter change.

NetFlick: Adversarial Flickering Attacks on Deep Learning Based Video Compression

no code implementations4 Apr 2023 Jung-Woo Chang, Nojan Sheybani, Shehzeen Samarah Hussain, Mojan Javaheripi, Seira Hidano, Farinaz Koushanfar

Experimental results demonstrate that NetFlick can successfully deteriorate the performance of video compression frameworks in both digital- and physical-settings and can be further extended to attack downstream video classification networks.

Deep Learning Video Classification +1

Tailor: Altering Skip Connections for Resource-Efficient Inference

no code implementations18 Jan 2023 Olivia Weng, Gabriel Marcano, Vladimir Loncar, Alireza Khodamoradi, Nojan Sheybani, Andres Meza, Farinaz Koushanfar, Kristof Denolf, Javier Mauricio Duarte, Ryan Kastner

We argue that while a network's skip connections are needed for the network to learn, they can later be removed or shortened to provide a more hardware efficient implementation with minimal to no accuracy loss.

FastStamp: Accelerating Neural Steganography and Digital Watermarking of Images on FPGAs

no code implementations26 Sep 2022 Shehzeen Hussain, Nojan Sheybani, Paarth Neekhara, Xinqiao Zhang, Javier Duarte, Farinaz Koushanfar

In this work, we design the first accelerator platform FastStamp to perform DNN based steganography and digital watermarking of images on hardware.

Image Steganography

zPROBE: Zero Peek Robustness Checks for Federated Learning

no code implementations ICCV 2023 Zahra Ghodsi, Mojan Javaheripi, Nojan Sheybani, Xinqiao Zhang, Ke Huang, Farinaz Koushanfar

However, keeping the individual updates private allows malicious users to perform Byzantine attacks and degrade the accuracy without being detected.

Federated Learning Privacy Preserving

Cannot find the paper you are looking for? You can Submit a new open access paper.