Search Results for author: Nong Xiao

Found 9 papers, 2 papers with code

Improving Math Word Problems with Pre-trained Knowledge and Hierarchical Reasoning

no code implementations EMNLP 2021 Weijiang Yu, Yingpeng Wen, Fudan Zheng, Nong Xiao

Firstly, our pre-trained knowledge encoder aims at reasoning the MWP by using outside knowledge from the pre-trained transformer-based models.

Learning from Inside: Self-driven Siamese Sampling and Reasoning for Video Question Answering

no code implementations NeurIPS 2021 Weijiang Yu, Haoteng Zheng, Mengfei Li, Lei Ji, Lijun Wu, Nong Xiao, Nan Duan

To consider the interdependent knowledge between contextual clips into the network inference, we propose a Siamese Sampling and Reasoning (SiaSamRea) approach, which consists of a siamese sampling mechanism to generate sparse and similar clips (i. e., siamese clips) from the same video, and a novel reasoning strategy for integrating the interdependent knowledge between contextual clips into the network.

Question Answering Video Question Answering

Hybrid Reasoning Network for Video-based Commonsense Captioning

1 code implementation5 Aug 2021 Weijiang Yu, Jian Liang, Lei Ji, Lu Li, Yuejian Fang, Nong Xiao, Nan Duan

Firstly, we develop multi-commonsense learning for semantic-level reasoning by jointly training different commonsense types in a unified network, which encourages the interaction between the clues of multiple commonsense descriptions, event-wise captions and videos.

ElixirNet: Relation-aware Network Architecture Adaptation for Medical Lesion Detection

no code implementations3 Mar 2020 Chenhan Jiang, Shaoju Wang, Hang Xu, Xiaodan Liang, Nong Xiao

Is a hand-crafted detection network tailored for natural image undoubtedly good enough over a discrepant medical lesion domain?

Lesion Detection medical image detection

Heterogeneous Graph Learning for Visual Commonsense Reasoning

1 code implementation NeurIPS 2019 Weijiang Yu, Jingwen Zhou, Weihao Yu, Xiaodan Liang, Nong Xiao

Our HGL consists of a primal vision-to-answer heterogeneous graph (VAHG) module and a dual question-to-answer heterogeneous graph (QAHG) module to interactively refine reasoning paths for semantic agreement.

Graph Learning Visual Commonsense Reasoning

Layout-Graph Reasoning for Fashion Landmark Detection

no code implementations CVPR 2019 Weijiang Yu, Xiaodan Liang, Ke Gong, Chenhan Jiang, Nong Xiao, Liang Lin

Each Layout-Graph Reasoning(LGR) layer aims to map feature representations into structural graph nodes via a Map-to-Node module, performs reasoning over structural graph nodes to achieve global layout coherency via a layout-graph reasoning module, and then maps graph nodes back to enhance feature representations via a Node-to-Map module.

Clustering Graph Clustering

Gradual Network for Single Image De-raining

no code implementations20 Sep 2019 Zhe Huang, Weijiang Yu, Wayne Zhang, Litong Feng, Nong Xiao

Taking the residual result (the coarse de-rained result) between the rainy image sample (i. e. the input data) and the output of coarse stage (i. e. the learnt rain mask) as input, the fine stage continues to de-rain by removing the fine-grained rain streaks (e. g. light rain streaks and water mist) to get a rain-free and well-reconstructed output image via a unified contextual merging sub-network with dense blocks and a merging block.

Rain Removal

Cross-Modal Attentional Context Learning for RGB-D Object Detection

no code implementations30 Oct 2018 Guanbin Li, Yukang Gan, Hejun Wu, Nong Xiao, Liang Lin

In this paper, we address this problem by developing a Cross-Modal Attentional Context (CMAC) learning framework, which enables the full exploitation of the context information from both RGB and depth data.

Autonomous Driving object-detection +1

Learning to Segment Object Candidates via Recursive Neural Networks

no code implementations4 Dec 2016 Tianshui Chen, Liang Lin, Xian Wu, Nong Xiao, Xiaonan Luo

To avoid the exhaustive search over locations and scales, current state-of-the-art object detection systems usually involve a crucial component generating a batch of candidate object proposals from images.

object-detection Object Proposal Generation

Cannot find the paper you are looking for? You can Submit a new open access paper.