1 code implementation • 12 Jun 2024 • Yida Chen, Aoyu Wu, Trevor DePodesta, Catherine Yeh, Kenneth Li, Nicholas Castillo Marin, Oam Patel, Jan Riecke, Shivam Raval, Olivia Seow, Martin Wattenberg, Fernanda Viégas
The dashboard can also be used to control the user model and the system's behavior.
2 code implementations • 8 Mar 2024 • Stephen Casper, Lennart Schulze, Oam Patel, Dylan Hadfield-Menell
In this work, we utilize latent adversarial training (LAT) to defend against vulnerabilities without leveraging knowledge of what they are or using inputs that elicit them.
1 code implementation • 5 Mar 2024 • Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D. Li, Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, Gabriel Mukobi, Nathan Helm-Burger, Rassin Lababidi, Lennart Justen, Andrew B. Liu, Michael Chen, Isabelle Barrass, Oliver Zhang, Xiaoyuan Zhu, Rishub Tamirisa, Bhrugu Bharathi, Adam Khoja, Zhenqi Zhao, Ariel Herbert-Voss, Cort B. Breuer, Samuel Marks, Oam Patel, Andy Zou, Mantas Mazeika, Zifan Wang, Palash Oswal, Weiran Lin, Adam A. Hunt, Justin Tienken-Harder, Kevin Y. Shih, Kemper Talley, John Guan, Russell Kaplan, Ian Steneker, David Campbell, Brad Jokubaitis, Alex Levinson, Jean Wang, William Qian, Kallol Krishna Karmakar, Steven Basart, Stephen Fitz, Mindy Levine, Ponnurangam Kumaraguru, Uday Tupakula, Vijay Varadharajan, Ruoyu Wang, Yan Shoshitaishvili, Jimmy Ba, Kevin M. Esvelt, Alexandr Wang, Dan Hendrycks
To measure these risks of malicious use, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs.
1 code implementation • NeurIPS 2023 • Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, Martin Wattenberg
This intervention significantly improves the performance of LLaMA models on the TruthfulQA benchmark.