no code implementations • 23 Jun 2023 • Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, Olivier Bachem
However, current distillation methods for auto-regressive models, such as generative language models (LMs), suffer from two key issues: (1) distribution mismatch between output sequences during training and the sequences generated by the student during its deployment, and (2) model under-specification, where the student model may not be expressive enough to fit the teacher's distribution.
no code implementations • 31 May 2023 • Paul Roit, Johan Ferret, Lior Shani, Roee Aharoni, Geoffrey Cideron, Robert Dadashi, Matthieu Geist, Sertan Girgin, Léonard Hussenot, Orgad Keller, Nikola Momchev, Sabela Ramos, Piotr Stanczyk, Nino Vieillard, Olivier Bachem, Gal Elidan, Avinatan Hassidim, Olivier Pietquin, Idan Szpektor
Despite the seeming success of contemporary grounded text generation systems, they often tend to generate factually inconsistent text with respect to their input.
Abstractive Text Summarization
Natural Language Inference
+2
no code implementations • 7 Nov 2022 • Alexis Jacq, Manu Orsini, Gabriel Dulac-Arnold, Olivier Pietquin, Matthieu Geist, Olivier Bachem
Are the quantity and quality of data truly transformative to the performance of a general controller?
1 code implementation • 21 Oct 2022 • Leonard Adolphs, Michelle Chen Huebscher, Christian Buck, Sertan Girgin, Olivier Bachem, Massimiliano Ciaramita, Thomas Hofmann
Neural retrieval models have superseded classic bag-of-words methods such as BM25 as the retrieval framework of choice.
no code implementations • 14 Sep 2022 • Geoffrey Cideron, Sertan Girgin, Anton Raichuk, Olivier Pietquin, Olivier Bachem, Léonard Hussenot
We propose a simple data augmentation technique based on round-trip translations and show in extensive experiments that the resulting vec2text model surprisingly leads to vector spaces that fulfill our four desired properties and that this model strongly outperforms both standard and denoising auto-encoders.
no code implementations • 10 Oct 2021 • Shixiang Shane Gu, Manfred Diaz, Daniel C. Freeman, Hiroki Furuta, Seyed Kamyar Seyed Ghasemipour, Anton Raichuk, Byron David, Erik Frey, Erwin Coumans, Olivier Bachem
While reward maximization is at the core of RL, reward engineering is not the only -- sometimes nor the easiest -- way for specifying complex behaviors.
1 code implementation • 12 Aug 2021 • Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Mueller, Shivam Garg, Matthieu Geist, Marlos C. Machado, Pablo Samuel Castro, Nicolas Le Roux
Common policy gradient methods rely on the maximization of a sequence of surrogate functions.
no code implementations • ICLR 2022 • Andrea Dittadi, Frederik Träuble, Manuel Wüthrich, Felix Widmaier, Peter Gehler, Ole Winther, Francesco Locatello, Olivier Bachem, Bernhard Schölkopf, Stefan Bauer
By training 240 representations and over 10, 000 reinforcement learning (RL) policies on a simulated robotic setup, we evaluate to what extent different properties of pretrained VAE-based representations affect the OOD generalization of downstream agents.
1 code implementation • 24 Jun 2021 • C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, Olivier Bachem
We present Brax, an open source library for rigid body simulation with a focus on performance and parallelism on accelerators, written in JAX.
no code implementations • ICML Workshop URL 2021 • Frederik Träuble, Andrea Dittadi, Manuel Wuthrich, Felix Widmaier, Peter Vincent Gehler, Ole Winther, Francesco Locatello, Olivier Bachem, Bernhard Schölkopf, Stefan Bauer
Learning data representations that are useful for various downstream tasks is a cornerstone of artificial intelligence.
Out-of-Distribution Generalization
reinforcement-learning
+2
no code implementations • 11 Jun 2021 • Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier Pietquin, Matthieu Geist
This is the converse of exploration in RL, which favors such actions.
no code implementations • 7 Jun 2021 • Matthieu Geist, Julien Pérolat, Mathieu Laurière, Romuald Elie, Sarah Perrin, Olivier Bachem, Rémi Munos, Olivier Pietquin
Mean-field Games (MFGs) are a continuous approximation of many-agent RL.
1 code implementation • NeurIPS 2021 • Manu Orsini, Anton Raichuk, Léonard Hussenot, Damien Vincent, Robert Dadashi, Sertan Girgin, Matthieu Geist, Olivier Bachem, Olivier Pietquin, Marcin Andrychowicz
To tackle this issue, we implement more than 50 of these choices in a generic adversarial imitation learning framework and investigate their impacts in a large-scale study (>500k trained agents) with both synthetic and human-generated demonstrations.
no code implementations • 25 May 2021 • Baris Sumengen, Anand Rajagopalan, Gui Citovsky, David Simcha, Olivier Bachem, Pradipta Mitra, Sam Blasiak, Mason Liang, Sanjiv Kumar
Hierarchical Agglomerative Clustering (HAC) is one of the oldest but still most widely used clustering methods.
no code implementations • 25 May 2021 • Leonard Hussenot, Marcin Andrychowicz, Damien Vincent, Robert Dadashi, Anton Raichuk, Lukasz Stafiniak, Sertan Girgin, Raphael Marinier, Nikola Momchev, Sabela Ramos, Manu Orsini, Olivier Bachem, Matthieu Geist, Olivier Pietquin
The vast literature in imitation learning mostly considers this reward function to be available for HP selection, but this is not a realistic setting.
no code implementations • ICLR 2021 • Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem
In recent years, reinforcement learning (RL) has been successfully applied to many different continuous control tasks.
no code implementations • 27 Oct 2020 • Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem
The idea behind the \emph{unsupervised} learning of \emph{disentangled} representations is that real-world data is generated by a few explanatory factors of variation which can be recovered by unsupervised learning algorithms.
no code implementations • 28 Jul 2020 • Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem
The goal of the unsupervised learning of disentangled representations is to separate the independent explanatory factors of variation in the data without access to supervision.
1 code implementation • 10 Jun 2020 • Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem
In recent years, on-policy reinforcement learning (RL) has been successfully applied to many different continuous control tasks.
no code implementations • ICLR Workshop LLD 2019 • Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem
Recently, Locatello et al. (2019) demonstrated that unsupervised disentanglement learning without inductive biases is theoretically impossible and that existing inductive biases and unsupervised methods do not allow to consistently learn disentangled representations.
no code implementations • ICML 2020 • Matthias Minderer, Olivier Bachem, Neil Houlsby, Michael Tschannen
In self-supervised visual representation learning, a feature extractor is trained on a "pretext task" for which labels can be generated cheaply, without human annotation.
3 code implementations • ICML 2020 • Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, Michael Tschannen
Third, we perform a large-scale empirical study and show that such pairs of observations are sufficient to reliably learn disentangled representations on several benchmark data sets.
2 code implementations • arXiv 2020 • Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer, Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, Neil Houlsby
And, how close are we to general visual representations?
Ranked #10 on
Image Classification
on VTAB-1k
(using extra training data)
no code implementations • 25 Sep 2019 • Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer, Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, Neil Houlsby
Representation learning promises to unlock deep learning for the long tail of vision tasks without expansive labelled datasets.
1 code implementation • 25 Jul 2019 • Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, Sylvain Gelly
Recent progress in the field of reinforcement learning has been accelerated by virtual learning environments such as video games, where novel algorithms and ideas can be quickly tested in a safe and reproducible manner.
4 code implementations • NeurIPS 2019 • Muhammad Waleed Gondal, Manuel Wüthrich, Đorđe Miladinović, Francesco Locatello, Martin Breidt, Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard Schölkopf, Stefan Bauer
Learning meaningful and compact representations with disentangled semantic aspects is considered to be of key importance in representation learning.
no code implementations • NeurIPS 2019 • Francesco Locatello, Gabriele Abbati, Tom Rainforth, Stefan Bauer, Bernhard Schölkopf, Olivier Bachem
Recently there has been a significant interest in learning disentangled representations, as they promise increased interpretability, generalization to unseen scenarios and faster learning on downstream tasks.
no code implementations • NeurIPS 2019 • Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, Olivier Bachem
A disentangled representation encodes information about the salient factors of variation in the data independently.
no code implementations • 26 May 2019 • Josip Djolonga, Mario Lucic, Marco Cuturi, Olivier Bachem, Olivier Bousquet, Sylvain Gelly
Despite the tremendous progress in the estimation of generative models, the development of tools for diagnosing their failures and assessing their performance has advanced at a much slower pace.
no code implementations • 3 May 2019 • Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem
Recently, Locatello et al. (2019) demonstrated that unsupervised disentanglement learning without inductive biases is theoretically impossible and that existing inductive biases and unsupervised methods do not allow to consistently learn disentangled representations.
1 code implementation • 6 Mar 2019 • Mario Lucic, Michael Tschannen, Marvin Ritter, Xiaohua Zhai, Olivier Bachem, Sylvain Gelly
Deep generative models are becoming a cornerstone of modern machine learning.
Ranked #9 on
Conditional Image Generation
on ImageNet 128x128
Conditional Image Generation
Vocal Bursts Intensity Prediction
no code implementations • 12 Dec 2018 • Michael Tschannen, Olivier Bachem, Mario Lucic
Finally, we provide an analysis of autoencoder-based representation learning through the lens of rate-distortion theory and identify a clear tradeoff between the amount of prior knowledge available about the downstream tasks, and how useful the representation is for this task.
7 code implementations • ICML 2019 • Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem
The key idea behind the unsupervised learning of disentangled representations is that real-world data is generated by a few explanatory factors of variation which can be recovered by unsupervised learning algorithms.
4 code implementations • NeurIPS 2018 • Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, Sylvain Gelly
Recent advances in generative modeling have led to an increased interest in the study of statistical divergences as means of model comparison.
no code implementations • 27 Nov 2017 • Olivier Bachem, Mario Lucic, Silvio Lattanzi
Scaling clustering algorithms to massive data sets is a challenging task.
no code implementations • ICML 2017 • Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause
In this paper, we provide a novel framework to obtain uniform deviation bounds for loss functions which are unbounded.
no code implementations • ICML 2017 • Olivier Bachem, Mario Lucic, Andreas Krause
The k-Means++ algorithm is the state of the art algorithm to solve k-Means clustering problems as the computed clusterings are O(log k) competitive in expectation.
2 code implementations • 19 Mar 2017 • Olivier Bachem, Mario Lucic, Andreas Krause
We investigate coresets - succinct, small summaries of large data sets - so that solutions found on the summary are provably competitive with solution found on the full data set.
1 code implementation • 27 Feb 2017 • Olivier Bachem, Mario Lucic, Andreas Krause
As such, they have been successfully used to scale up clustering models to massive data sets.
no code implementations • 27 Feb 2017 • Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause
In this paper, we provide a novel framework to obtain uniform deviation bounds for loss functions which are *unbounded*.
1 code implementation • NeurIPS 2016 • Olivier Bachem, Mario Lucic, Hamed Hassani, Andreas Krause
Seeding - the task of finding initial cluster centers - is critical in obtaining high-quality clusterings for k-Means.
no code implementations • 31 May 2016 • Mario Lucic, Olivier Bachem, Morteza Zadimoghaddam, Andreas Krause
A variety of large-scale machine learning problems can be cast as instances of constrained submodular maximization.
no code implementations • 2 May 2016 • Mario Lucic, Olivier Bachem, Andreas Krause
Outliers are ubiquitous in modern data sets.
no code implementations • 21 Aug 2015 • Mario Lucic, Olivier Bachem, Andreas Krause
We propose a single, practical algorithm to construct strong coresets for a large class of hard and soft clustering problems based on Bregman divergences.