1 code implementation • COLING (CODI, CRAC) 2022 • Mathilde Veron, Olivier Galibert, Guillaume Bernard, Sophie Rosset
Dialog state tracking (DST) is a core step for task-oriented dialogue systems aiming to track the user’s current goal during a dialogue.
1 code implementation • MMMPIE (COLING) 2022 • Juan Manuel Coria, Mathilde Veron, Sahar Ghannay, Guillaume Bernard, Hervé Bredin, Olivier Galibert, Sophie Rosset
Knowledge transfer between neural language models is a widely used technique that has proven to improve performance in a multitude of natural language tasks, in particular with the recent rise of large pre-trained language models like BERT.
no code implementations • WMT (EMNLP) 2020 • Loïc Barrault, Magdalena Biesialska, Marta R. Costa-jussà, Fethi Bougares, Olivier Galibert
A lifelong learning system can adapt to new data without forgetting previously acquired knowledge.
1 code implementation • 21 Oct 2022 • Laurent Besacier, Swen Ribeiro, Olivier Galibert, Ioan Calapodescu
In this paper, we introduce a new and simple method for comparing speech utterances without relying on text transcripts.
no code implementations • 26 Feb 2021 • Mathilde Veron, Sophie Rosset, Olivier Galibert, Guillaume Bernard
On-the-job learning consists in continuously learning while being used in production, in an open environment, meaning that the system has to deal on its own with situations and elements never seen before.
no code implementations • JEPTALNRECITAL 2020 • Yevhenii Prokopalo, Sylvain Meignier, Olivier Galibert, Lo{\"\i}c Barrault, Anthony Larcher
Une adaptation de leur mod{\`e}le par des experts en apprentissage automatique est possible mais tr{\`e}s co{\^u}teuse alors que les soci{\'e}t{\'e}s utilisant ces syst{\`e}mes disposent d{'}experts du domaine qui pourraient accompagner ces syst{\`e}mes dans un apprentissage tout au long de la vie.
no code implementations • LREC 2020 • Yevhenii Prokopalo, Sylvain Meignier, Olivier Galibert, Loic Barrault, Anthony Larcher
Current intelligent systems need the expensive support of machine learning experts to sustain their performance level when used on a daily basis.
no code implementations • WS 2018 • Zied Elloumi, Laurent Besacier, Olivier Galibert, Benjamin Lecouteux
In a previous paper, we presented an ASR performance prediction system using CNNs that encode both text (ASR transcript) and speech, in order to predict word error rate.
no code implementations • 23 Apr 2018 • Zied Elloumi, Laurent Besacier, Olivier Galibert, Juliette Kahn, Benjamin Lecouteux
In this paper, we address a relatively new task: prediction of ASR performance on unseen broadcast programs.
no code implementations • JEPTALNRECITAL 2016 • Guillaume Bernard, Juliette Kahn, Olivier Galibert, R{\'e}mi Regnier, S{\'e}verine Demeyer
LNE-Visu : a tool to explore and visualize multimedia data LNE-Visu is a tool to explore and visualize multimedia data created for the LNE evaluation campaigns.
no code implementations • JEPTALNRECITAL 2016 • Olivier Galibert, Juliette Kahn, Sophie Rosset
Le travail que nous pr{\'e}sentons ici s{'}inscrit dans le domaine de l{'}{\'e}valuation des syst{\`e}mes de reconnaissance automatique de la parole en vue de leur utilisation dans une t{\^a}che aval, ici la reconnaissance des entit{\'e}s nomm{\'e}es.
no code implementations • JEPTALNRECITAL 2016 • Olivier Galibert, Nathalie Camelin, Paul Del{\'e}glise, Sophie Rosset
Nous comparons ici diff{\'e}rentes m{\'e}triques, notamment le WER, NE-WER et ATENE m{\'e}trique propos{\'e}e r{\'e}cemment pour l{'}{\'e}valuation des syst{\`e}mes de reconnaissance de la parole {\'e}tant donn{\'e} une t{\^a}che de reconnaissance d{'}entit{\'e}s nomm{\'e}es.
no code implementations • LREC 2016 • Olivier Galibert, Mohamed Ameur Ben Jannet, Juliette Kahn, Sophie Rosset
In the context of Automatic Speech Recognition (ASR) used as a first step towards Named Entity Recognition (NER) in speech, error seriousness is usually determined by their frequency, due to the use of the WER as metric to evaluate the ASR output, despite the emergence of more relevant measures in the literature.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +4
no code implementations • LREC 2014 • Olivier Galibert, Jeremy Leixa, Gilles Adda, Khalid Choukri, Guillaume Gravier
The ETAPE evaluation is the third evaluation in automatic speech recognition and associated technologies in a series which started with ESTER.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +4
no code implementations • LREC 2014 • Mohamed Ben Jannet, Martine Adda-Decker, Olivier Galibert, Juliette Kahn, Sophie Rosset
We then introduce a new metric, the Entity Tree Error Rate (ETER), to evaluate hierarchical and structured named entity detection, classification and decomposition.
no code implementations • JEPTALNRECITAL 2012 • Juliette Kahn, Aude Giraudel, Matthieu Carr{\'e}, Olivier Galibert, Ludovic Quintard
no code implementations • LREC 2012 • Guillaume Gravier, Gilles Adda, Niklas Paulsson, Matthieu Carr{\'e}, Aude Giraudel, Olivier Galibert
The paper presents a comprehensive overview of existing data for the evaluation of spoken content processing in a multimedia framework for the French language.
no code implementations • LREC 2012 • Kar{\"e}n Fort, Claire Fran{\c{c}}ois, Olivier Galibert, Maha Ghribi
This article details work aiming at evaluating the quality of the manual annotation of gene renaming couples in scientific abstracts, which generates sparse annotations.
no code implementations • LREC 2012 • Aude Giraudel, Matthieu Carr{\'e}, Val{\'e}rie Mapelli, Juliette Kahn, Olivier Galibert, Ludovic Quintard
In this context, the REPERE corpus, a French videos corpus with multimodal annotation, has been developed.
no code implementations • LREC 2012 • Olivier Galibert, Sophie Rosset, Cyril Grouin, Pierre Zweigenbaum, Ludovic Quintard
Within the framework of the Quaero project, we proposed a new definition of named entities, based upon an extension of the coverage of named entities as well as the structure of those named entities.
Named Entity Recognition (NER) Optical Character Recognition (OCR)