no code implementations • 2 Aug 2024 • Chayan Banerjee, Kien Nguyen, Olivier Salvado, Truyen Tran, Clinton Fookes
We delve deep into a wide range of image analysis tasks, from imaging, generation, prediction, inverse imaging (super-resolution and reconstruction), registration, and image analysis (segmentation and classification).
no code implementations • 29 Jul 2024 • Remi Chierchia, Leo Lebrat, David Ahmedt-Aristizabal, Olivier Salvado, Clinton Fookes, Rodrigo Santa Cruz
Using this dataset, we assess the accuracy and precision of state-of-the-art methods for 3D reconstruction, ranging from traditional photogrammetry pipelines to advanced neural rendering approaches.
1 code implementation • CVPR 2024 • Wenhui Xiao, Rodrigo Santa Cruz, David Ahmedt-Aristizabal, Olivier Salvado, Clinton Fookes, Leo Lebrat
Neural Rendering representations have significantly contributed to the field of 3D computer vision.
no code implementations • 29 Jan 2024 • Rongkai Ma, Leo Lebrat, Rodrigo Santa Cruz, Gil Avraham, Yan Zuo, Clinton Fookes, Olivier Salvado
Neural radiance fields (NeRFs) have exhibited potential in synthesizing high-fidelity views of 3D scenes but the standard training paradigm of NeRF presupposes an equal importance for each image in the training set.
no code implementations • 27 Nov 2023 • Léo Lebrat, Rodrigo Santa Cruz, Remi Chierchia, Yulia Arzhaeva, Mohammad Ali Armin, Joshua Goldsmith, Jeremy Oorloff, Prithvi Reddy, Chuong Nguyen, Lars Petersson, Michelle Barakat-Johnson, Georgina Luscombe, Clinton Fookes, Olivier Salvado, David Ahmedt-Aristizabal
Wound management poses a significant challenge, particularly for bedridden patients and the elderly.
no code implementations • 11 Aug 2023 • Karim Lekadir, Aasa Feragen, Abdul Joseph Fofanah, Alejandro F Frangi, Alena Buyx, Anais Emelie, Andrea Lara, Antonio R Porras, An-Wen Chan, Arcadi Navarro, Ben Glocker, Benard O Botwe, Bishesh Khanal, Brigit Beger, Carol C Wu, Celia Cintas, Curtis P Langlotz, Daniel Rueckert, Deogratias Mzurikwao, Dimitrios I Fotiadis, Doszhan Zhussupov, Enzo Ferrante, Erik Meijering, Eva Weicken, Fabio A González, Folkert W Asselbergs, Fred Prior, Gabriel P Krestin, Gary Collins, Geletaw S Tegenaw, Georgios Kaissis, Gianluca Misuraca, Gianna Tsakou, Girish Dwivedi, Haridimos Kondylakis, Harsha Jayakody, Henry C Woodruf, Horst Joachim Mayer, Hugo JWL Aerts, Ian Walsh, Ioanna Chouvarda, Irène Buvat, Isabell Tributsch, Islem Rekik, James Duncan, Jayashree Kalpathy-Cramer, Jihad Zahir, Jinah Park, John Mongan, Judy W Gichoya, Julia A Schnabel, Kaisar Kushibar, Katrine Riklund, Kensaku MORI, Kostas Marias, Lameck M Amugongo, Lauren A Fromont, Lena Maier-Hein, Leonor Cerdá Alberich, Leticia Rittner, Lighton Phiri, Linda Marrakchi-Kacem, Lluís Donoso-Bach, Luis Martí-Bonmatí, M Jorge Cardoso, Maciej Bobowicz, Mahsa Shabani, Manolis Tsiknakis, Maria A Zuluaga, Maria Bielikova, Marie-Christine Fritzsche, Marina Camacho, Marius George Linguraru, Markus Wenzel, Marleen de Bruijne, Martin G Tolsgaard, Marzyeh Ghassemi, Md Ashrafuzzaman, Melanie Goisauf, Mohammad Yaqub, Mónica Cano Abadía, Mukhtar M E Mahmoud, Mustafa Elattar, Nicola Rieke, Nikolaos Papanikolaou, Noussair Lazrak, Oliver Díaz, Olivier Salvado, Oriol Pujol, Ousmane Sall, Pamela Guevara, Peter Gordebeke, Philippe Lambin, Pieta Brown, Purang Abolmaesumi, Qi Dou, Qinghua Lu, Richard Osuala, Rose Nakasi, S Kevin Zhou, Sandy Napel, Sara Colantonio, Shadi Albarqouni, Smriti Joshi, Stacy Carter, Stefan Klein, Steffen E Petersen, Susanna Aussó, Suyash Awate, Tammy Riklin Raviv, Tessa Cook, Tinashe E M Mutsvangwa, Wendy A Rogers, Wiro J Niessen, Xènia Puig-Bosch, Yi Zeng, Yunusa G Mohammed, Yves Saint James Aquino, Zohaib Salahuddin, Martijn P A Starmans
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
no code implementations • ICCV 2023 • Huaxi Huang, Hui Kang, Sheng Liu, Olivier Salvado, Thierry Rakotoarivelo, Dadong Wang, Tongliang Liu
The early stopping strategy averts updating CNNs during the early training phase and is widely employed in the presence of noisy labels.
no code implementations • 14 Jun 2022 • Rodrigo Santa Cruz, Léo Lebrat, Darren Fu, Pierrick Bourgeat, Jurgen Fripp, Clinton Fookes, Olivier Salvado
Using the state-of-the-art CorticalFlow model as a blueprint, this paper proposes three modifications to improve its accuracy and interoperability with existing surface analysis tools, while not sacrificing its fast inference time and low GPU memory consumption.
no code implementations • 6 Jun 2022 • Léo Lebrat, Rodrigo Santa Cruz, Frédéric de Gournay, Darren Fu, Pierrick Bourgeat, Jurgen Fripp, Clinton Fookes, Olivier Salvado
In this paper we introduce CorticalFlow, a new geometric deep-learning model that, given a 3-dimensional image, learns to deform a reference template towards a targeted object.
no code implementations • 24 Mar 2022 • Mithun Lal, Anthony Paproki, Nariman Habili, Lars Petersson, Olivier Salvado, Clinton Fookes
Results show that training 2D-3D mapping network models on synthetic data is a viable alternative to using real data.
1 code implementation • NeurIPS 2021 • Leo Lebrat, Rodrigo Santa Cruz, Frederic de Gournay, Darren Fu, Pierrick Bourgeat, Jurgen Fripp, Clinton Fookes, Olivier Salvado
In this paper, we introduce CorticalFlow, a new geometric deep-learning model that, given a 3-dimensional image, learns to deform a reference template towards a targeted object.
1 code implementation • CVPR 2021 • Léo Lebrat, Rodrigo Santa Cruz, Clinton Fookes, Olivier Salvado
Recent advances in geometric deep-learning introduce complex computational challenges for evaluating the distance between meshes.
no code implementations • 22 Oct 2020 • Rodrigo Santa Cruz, Leo Lebrat, Pierrick Bourgeat, Clinton Fookes, Jurgen Fripp, Olivier Salvado
Having these limitations in mind, we propose DeepCSR, a 3D deep learning framework for cortical surface reconstruction from MRI.
no code implementations • 7 Sep 2020 • Rodrigo Santa Cruz, Léo Lebrat, Pierrick Bourgeat, Vincent Doré, Jason Dowling, Jurgen Fripp, Clinton Fookes, Olivier Salvado
Brain morphometry from magnetic resonance imaging (MRI) is a consolidated biomarker for many neurodegenerative diseases.
no code implementations • 15 Feb 2020 • Abdullah Nazib, Clinton Fookes, Olivier Salvado, Dimitri Perrin
The recent application of deep learning technologies in medical image registration has exponentially decreased the registration time and gradually increased registration accuracy when compared to their traditional counterparts.