Search Results for author: Omar Darwiche Domingues

Found 10 papers, 3 papers with code

Adaptive Multi-Goal Exploration

no code implementations23 Nov 2021 Jean Tarbouriech, Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Michal Valko, Alessandro Lazaric

We introduce a generic strategy for provably efficient multi-goal exploration.

UCB Momentum Q-learning: Correcting the bias without forgetting

1 code implementation1 Mar 2021 Pierre Menard, Omar Darwiche Domingues, Xuedong Shang, Michal Valko

We propose UCBMQ, Upper Confidence Bound Momentum Q-learning, a new algorithm for reinforcement learning in tabular and possibly stage-dependent, episodic Markov decision process.

Q-Learning

Episodic Reinforcement Learning in Finite MDPs: Minimax Lower Bounds Revisited

no code implementations7 Oct 2020 Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, Michal Valko

In this paper, we propose new problem-independent lower bounds on the sample complexity and regret in episodic MDPs, with a particular focus on the non-stationary case in which the transition kernel is allowed to change in each stage of the episode.

reinforcement-learning Reinforcement Learning (RL)

A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Metric Spaces

no code implementations9 Jul 2020 Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, Michal Valko

In this work, we propose KeRNS: an algorithm for episodic reinforcement learning in non-stationary Markov Decision Processes (MDPs) whose state-action set is endowed with a metric.

reinforcement-learning Reinforcement Learning (RL)

Adaptive Reward-Free Exploration

no code implementations11 Jun 2020 Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent, Michal Valko

Reward-free exploration is a reinforcement learning setting studied by Jin et al. (2020), who address it by running several algorithms with regret guarantees in parallel.

Planning in Markov Decision Processes with Gap-Dependent Sample Complexity

no code implementations NeurIPS 2020 Anders Jonsson, Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Edouard Leurent, Michal Valko

We propose MDP-GapE, a new trajectory-based Monte-Carlo Tree Search algorithm for planning in a Markov Decision Process in which transitions have a finite support.

Kernel-Based Reinforcement Learning: A Finite-Time Analysis

1 code implementation12 Apr 2020 Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, Michal Valko

We consider the exploration-exploitation dilemma in finite-horizon reinforcement learning problems whose state-action space is endowed with a metric.

reinforcement-learning Reinforcement Learning (RL)

Planning in entropy-regularized Markov decision processes and games

1 code implementation NeurIPS 2019 Jean-bastien Grill, Omar Darwiche Domingues, Pierre Menard, Remi Munos, Michal Valko

We propose SmoothCruiser, a new planning algorithm for estimating the value function in entropy-regularized Markov decision processes and two-player games, given a generative model of the SmoothCruiser.

Cannot find the paper you are looking for? You can Submit a new open access paper.