Search Results for author: Orith Toledo-Ronen

Found 7 papers, 1 papers with code

Multi-Domain Targeted Sentiment Analysis

no code implementations NAACL 2022 Orith Toledo-Ronen, Matan Orbach, Yoav Katz, Noam Slonim

Our results and analysis show that our approach is a promising step towards a practical domain-robust TSA system.

Sentiment Analysis

Multilingual Argument Mining: Datasets and Analysis

no code implementations Findings of the Association for Computational Linguistics 2020 Orith Toledo-Ronen, Matan Orbach, Yonatan Bilu, Artem Spector, Noam Slonim

The growing interest in argument mining and computational argumentation brings with it a plethora of Natural Language Understanding (NLU) tasks and corresponding datasets.

Argument Mining Machine Translation +3

Financial Event Extraction Using Wikipedia-Based Weak Supervision

no code implementations WS 2019 Liat Ein-Dor, Ariel Gera, Orith Toledo-Ronen, Alon Halfon, Benjamin Sznajder, Lena Dankin, Yonatan Bilu, Yoav Katz, Noam Slonim

Extraction of financial and economic events from text has previously been done mostly using rule-based methods, with more recent works employing machine learning techniques.

BIG-bench Machine Learning Event Extraction

Cannot find the paper you are looking for? You can Submit a new open access paper.