1 code implementation • 12 Jun 2024 • Ossi Räisä, Stratis Markou, Matthew Ashman, Wessel P. Bruinsma, Marlon Tobaben, Antti Honkela, Richard E. Turner
One approach to mitigating this issue is pre-training models on simulated data before DP learning on the private data.
1 code implementation • 6 Feb 2024 • Ossi Räisä, Joonas Jälkö, Antti Honkela
The remaining subsampling-induced variance decreases with larger batch sizes, so large batches reduce the effective total gradient variance.
1 code implementation • 6 Feb 2024 • Ossi Räisä, Antti Honkela
Recent studies have highlighted the benefits of generating multiple synthetic datasets for supervised learning, from increased accuracy to more effective model selection and uncertainty estimation.
2 code implementations • 28 May 2022 • Ossi Räisä, Joonas Jälkö, Samuel Kaski, Antti Honkela
For example, confidence intervals become too narrow, which we demonstrate with a simple experiment.