no code implementations • 31 Jul 2023 • Charles Jones, Daniel C. Castro, Fabio De Sousa Ribeiro, Ozan Oktay, Melissa McCradden, Ben Glocker
As machine learning methods gain prominence within clinical decision-making, addressing fairness concerns becomes increasingly urgent.
no code implementations • 9 May 2023 • Ho Hin Lee, Alberto Santamaria-Pang, Jameson Merkow, Ozan Oktay, Fernando Pérez-García, Javier Alvarez-Valle, Ivan Tarapov
We introduce a novel Region-based contrastive pretraining for Medical Image Retrieval (RegionMIR) that demonstrates the feasibility of medical image retrieval with similar anatomical regions.
no code implementations • 23 Mar 2023 • Fangyu Liu, Qianchu Liu, Shruthi Bannur, Fernando Pérez-García, Naoto Usuyama, Sheng Zhang, Tristan Naumann, Aditya Nori, Hoifung Poon, Javier Alvarez-Valle, Ozan Oktay, Stephanie L. Hyland
We evaluate DoT5 on the biomedical domain and the resource-lean subdomain of radiology, focusing on NLI, text summarisation and embedding learning.
no code implementations • CVPR 2023 • Shruthi Bannur, Stephanie Hyland, Qianchu Liu, Fernando Pérez-García, Maximilian Ilse, Daniel C. Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anja Thieme, Anton Schwaighofer, Maria Wetscherek, Matthew P. Lungren, Aditya Nori, Javier Alvarez-Valle, Ozan Oktay
Prior work in biomedical VLP has mostly relied on the alignment of single image and report pairs even though clinical notes commonly refer to prior images.
1 code implementation • 21 Apr 2022 • Benedikt Boecking, Naoto Usuyama, Shruthi Bannur, Daniel C. Castro, Anton Schwaighofer, Stephanie Hyland, Maria Wetscherek, Tristan Naumann, Aditya Nori, Javier Alvarez-Valle, Hoifung Poon, Ozan Oktay
We release a new dataset with locally-aligned phrase grounding annotations by radiologists to facilitate the study of complex semantic modelling in biomedical vision--language processing.
1 code implementation • 1 Sep 2021 • Melanie Bernhardt, Daniel C. Castro, Ryutaro Tanno, Anton Schwaighofer, Kerem C. Tezcan, Miguel Monteiro, Shruthi Bannur, Matthew Lungren, Aditya Nori, Ben Glocker, Javier Alvarez-Valle, Ozan Oktay
Imperfections in data annotation, known as label noise, are detrimental to the training of machine learning models and have an often-overlooked confounding effect on the assessment of model performance.
1 code implementation • 14 Jul 2021 • Shruthi Bannur, Ozan Oktay, Melanie Bernhardt, Anton Schwaighofer, Rajesh Jena, Besmira Nushi, Sharan Wadhwani, Aditya Nori, Kal Natarajan, Shazad Ashraf, Javier Alvarez-Valle, Daniel C. Castro
Chest radiography has been a recommended procedure for patient triaging and resource management in intensive care units (ICUs) throughout the COVID-19 pandemic.
1 code implementation • 22 Jul 2019 • Matthew C. H. Lee, Ozan Oktay, Andreas Schuh, Michiel Schaap, Ben Glocker
The goal is to learn a complex function that maps the appearance of input image pairs to parameters of a spatial transformation in order to align corresponding anatomical structures.
1 code implementation • 28 Jun 2019 • Carlo Biffi, Juan J. Cerrolaza, Giacomo Tarroni, Wenjia Bai, Antonio de Marvao, Ozan Oktay, Christian Ledig, Loic Le Folgoc, Konstantinos Kamnitsas, Georgia Doumou, Jinming Duan, Sanjay K. Prasad, Stuart A. Cook, Declan P. O'Regan, Daniel Rueckert
At the highest level of this hierarchy, a two-dimensional latent space is simultaneously optimised to discriminate distinct clinical conditions, enabling the direct visualisation of the classification space.
no code implementations • 27 Jan 2019 • Robert Robinson, Vanya V. Valindria, Wenjia Bai, Ozan Oktay, Bernhard Kainz, Hideaki Suzuki, Mihir M. Sanghvi, Nay Aung, Jos$é$ Miguel Paiva, Filip Zemrak, Kenneth Fung, Elena Lukaschuk, Aaron M. Lee, Valentina Carapella, Young Jin Kim, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Chris Page, Paul M. Matthews, Daniel Rueckert, Ben Glocker
Methods: To overcome this challenge, we explore an approach for predicting segmentation quality based on Reverse Classification Accuracy, which enables us to discriminate between successful and failed segmentations on a per-cases basis.
no code implementations • 20 Nov 2018 • Qingjie Meng, Matthew Sinclair, Veronika Zimmer, Benjamin Hou, Martin Rajchl, Nicolas Toussaint, Ozan Oktay, Jo Schlemper, Alberto Gomez, James Housden, Jacqueline Matthew, Daniel Rueckert, Julia Schnabel, Bernhard Kainz
Our method is more consistent than human annotation, and outperforms the state-of-the-art quantitatively in shadow segmentation and qualitatively in confidence estimation of shadow regions.
Image Classification
Shadow Confidence Maps In Ultrasound Imaging
no code implementations • 3 Oct 2018 • Giacomo Tarroni, Ozan Oktay, Matthew Sinclair, Wenjia Bai, Andreas Schuh, Hideaki Suzuki, Antonio de Marvao, Declan O'Regan, Stuart Cook, Daniel Rueckert
If long axis (LA) images are available, PSMs are generated for them and combined to create the target PSM; if not, the target PSM is produced from the same stack using a 3D model trained from motion-free stacks.
2 code implementations • 22 Aug 2018 • Jo Schlemper, Ozan Oktay, Michiel Schaap, Mattias Heinrich, Bernhard Kainz, Ben Glocker, Daniel Rueckert
AGs can be easily integrated into standard CNN models such as VGG or U-Net architectures with minimal computational overhead while increasing the model sensitivity and prediction accuracy.
no code implementations • 1 Aug 2018 • Wenjia Bai, Hideaki Suzuki, Chen Qin, Giacomo Tarroni, Ozan Oktay, Paul M. Matthews, Daniel Rueckert
In this work, we propose an image sequence segmentation algorithm by combining a fully convolutional network with a recurrent neural network, which incorporates both spatial and temporal information into the segmentation task.
1 code implementation • 18 Jul 2018 • Carlo Biffi, Ozan Oktay, Giacomo Tarroni, Wenjia Bai, Antonio de Marvao, Georgia Doumou, Martin Rajchl, Reem Bedair, Sanjay Prasad, Stuart Cook, Declan O'Regan, Daniel Rueckert
However, current approaches to the diagnosis of cardiovascular diseases often rely on subjective human assessment as well as manual analysis of medical images.
1 code implementation • 28 Jun 2018 • Maximilian Seitzer, Guang Yang, Jo Schlemper, Ozan Oktay, Tobias Würfl, Vincent Christlein, Tom Wong, Raad Mohiaddin, David Firmin, Jennifer Keegan, Daniel Rueckert, Andreas Maier
In addition, we introduce a semantic interpretability score, measuring the visibility of the region of interest in both ground truth and reconstructed images, which allows us to objectively quantify the usefulness of the image quality for image post-processing and analysis.
no code implementations • 16 Jun 2018 • Robert Robinson, Ozan Oktay, Wenjia Bai, Vanya Valindria, Mihir Sanghvi, Nay Aung, José Paiva, Filip Zemrak, Kenneth Fung, Elena Lukaschuk, Aaron Lee, Valentina Carapella, Young Jin Kim, Bernhard Kainz, Stefan Piechnik, Stefan Neubauer, Steffen Petersen, Chris Page, Daniel Rueckert, Ben Glocker
Recent advances in deep learning based image segmentation methods have enabled real-time performance with human-level accuracy.
no code implementations • 8 Jun 2018 • Amir Alansary, Loic Le Folgoc, Ghislain Vaillant, Ozan Oktay, Yuanwei Li, Wenjia Bai, Jonathan Passerat-Palmbach, Ricardo Guerrero, Konstantinos Kamnitsas, Benjamin Hou, Steven McDonagh, Ben Glocker, Bernhard Kainz, Daniel Rueckert
Navigating through target anatomy to find the required view plane is tedious and operator-dependent.
6 code implementations • 15 Apr 2018 • Jo Schlemper, Ozan Oktay, Liang Chen, Jacqueline Matthew, Caroline Knight, Bernhard Kainz, Ben Glocker, Daniel Rueckert
We show that, when the base network has a high capacity, the incorporated attention mechanism can provide efficient object localisation while improving the overall performance.
31 code implementations • 11 Apr 2018 • Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa, Kensaku Mori, Steven McDonagh, Nils Y. Hammerla, Bernhard Kainz, Ben Glocker, Daniel Rueckert
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes.
Ranked #1 on
Pancreas Segmentation
on CT-150
no code implementations • 25 Mar 2018 • Giacomo Tarroni, Ozan Oktay, Wenjia Bai, Andreas Schuh, Hideaki Suzuki, Jonathan Passerat-Palmbach, Antonio de Marvao, Declan P. O'Regan, Stuart Cook, Ben Glocker, Paul M. Matthews, Daniel Rueckert
The results show the capability of the proposed pipeline to correctly detect incomplete or corrupted scans (e. g. on UK Biobank, sensitivity and specificity respectively 88% and 99% for heart coverage estimation, 85% and 95% for motion detection), allowing their exclusion from the analysed dataset or the triggering of a new acquisition.
1 code implementation • 29 Jan 2018 • Mattias P. Heinrich, Max Blendowski, Ozan Oktay
We propose a new scheme that approximates both trainable weights and neural activations in deep networks by ternary values and tackles the open question of backpropagation when dealing with non-differentiable functions.
1 code implementation • 25 Oct 2017 • Wenjia Bai, Matthew Sinclair, Giacomo Tarroni, Ozan Oktay, Martin Rajchl, Ghislain Vaillant, Aaron M. Lee, Nay Aung, Elena Lukaschuk, Mihir M. Sanghvi, Filip Zemrak, Kenneth Fung, Jose Miguel Paiva, Valentina Carapella, Young Jin Kim, Hideaki Suzuki, Bernhard Kainz, Paul M. Matthews, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Ben Glocker, Daniel Rueckert
By combining FCN with a large-scale annotated dataset, the proposed automated method achieves a high performance on par with human experts in segmenting the LV and RV on short-axis CMR images and the left atrium (LA) and right atrium (RA) on long-axis CMR images.
no code implementations • 22 May 2017 • Ozan Oktay, Enzo Ferrante, Konstantinos Kamnitsas, Mattias Heinrich, Wenjia Bai, Jose Caballero, Stuart Cook, Antonio de Marvao, Timothy Dawes, Declan O'Regan, Bernhard Kainz, Ben Glocker, Daniel Rueckert
However, in most recent and promising techniques such as CNN based segmentation it is not obvious how to incorporate such prior knowledge.
no code implementations • 28 Feb 2017 • Steven McDonagh, Benjamin Hou, Konstantinos Kamnitsas, Ozan Oktay, Amir Alansary, Mary Rutherford, Jo V. Hajnal, Bernhard Kainz
Fast imaging is required for targets that move to avoid motion artefacts.
no code implementations • 3 Jun 2016 • Martin Rajchl, Matthew C. H. Lee, Franklin Schrans, Alice Davidson, Jonathan Passerat-Palmbach, Giacomo Tarroni, Amir Alansary, Ozan Oktay, Bernhard Kainz, Daniel Rueckert
The availability of training data for supervision is a frequently encountered bottleneck of medical image analysis methods.
no code implementations • 25 May 2016 • Martin Rajchl, Matthew C. H. Lee, Ozan Oktay, Konstantinos Kamnitsas, Jonathan Passerat-Palmbach, Wenjia Bai, Mellisa Damodaram, Mary A. Rutherford, Joseph V. Hajnal, Bernhard Kainz, Daniel Rueckert
In this paper, we propose DeepCut, a method to obtain pixelwise object segmentations given an image dataset labelled with bounding box annotations.