no code implementations • 8 Jan 2025 • J. Kvapil, G. Borca-Tasciuc, H. Bossi, K. Chen, Y. Chen, Y. Corrales Morales, H. Da Costa, C. Da Silva, C. Dean, J. Durham, S. Fu, C. Hao, P. Harris, O. Hen, H. Jheng, Y. Lee, P. Li, X. Li, Y. Lin, M. X. Liu, V. Loncar, J. P. Mitrevski, A. Olvera, M. L. Purschke, J. S. Renck, G. Roland, J. Schambach, Z. Shi, N. Tran, N. Wuerfel, B. Xu, D. Yu, H. Zhang
This R\&D project, initiated by the DOE Nuclear Physics AI-Machine Learning initiative in 2022, leverages AI to address data processing challenges in high-energy nuclear experiments (RHIC, LHC, and future EIC).
no code implementations • 5 Nov 2019 • J. Amundson, J. Annis, C. Avestruz, D. Bowring, J. Caldeira, G. Cerati, C. Chang, S. Dodelson, D. Elvira, A. Farahi, K. Genser, L. Gray, O. Gutsche, P. Harris, J. Kinney, J. B. Kowalkowski, R. Kutschke, S. Mrenna, B. Nord, A. Para, K. Pedro, G. N. Perdue, A. Scheinker, P. Spentzouris, J. St. John, N. Tran, S. Trivedi, L. Trouille, W. L. K. Wu, C. R. Bom
Thus far the US has been a leader in AI technologies, and we believe as a national Laboratory it is crucial to help maintain and extend this leadership.