no code implementations • 21 Apr 2023 • Angela Castillo, Maria Escobar, Guillaume Jeanneret, Albert Pumarola, Pablo Arbeláez, Ali Thabet, Artsiom Sanakoyeu
To the best of our knowledge, this is the first approach that uses the reverse diffusion process to model full-body tracking as a conditional sequence generation task.
1 code implementation • 16 Apr 2023 • Natalia Valderrama, Ioannis Pitsiorlas, Luisa Vargas, Pablo Arbeláez, Maria A. Zuluaga
These results show the adequacy of JoB-VS for the challenging task of vessel segmentation in complete TOF-MRA images.
1 code implementation • 16 Mar 2023 • Nicolás Ayobi, Alejandra Pérez-Rondón, Santiago Rodríguez, Pablo Arbeláez
We propose Masked-Attention Transformers for Surgical Instrument Segmentation (MATIS), a two-stage, fully transformer-based method that leverages modern pixel-wise attention mechanisms for instrument segmentation.
1 code implementation • 8 Dec 2022 • Natalia Valderrama, Paola Ruiz Puentes, Isabela Hernández, Nicolás Ayobi, Mathilde Verlyk, Jessica Santander, Juan Caicedo, Nicolás Fernández, Pablo Arbeláez
Second, we present Transformers for Action, Phase, Instrument, and steps Recognition (TAPIR) as a strong baseline for surgical scene understanding.
no code implementations • 22 Jul 2022 • Maria Escobar, Laura Daza, Cristina González, Jordi Pont-Tuset, Pablo Arbeláez
We implemented Video Swin Transformer as a base architecture for the tasks of Point-of-No-Return temporal localization and Object State Change Classification.
no code implementations • 10 Feb 2022 • Juan C. Pérez, Motasem Alfarra, Ali Thabet, Pablo Arbeláez, Bernard Ghanem
We propose a methodology for assessing and characterizing the robustness of FRMs against semantic perturbations to their input.
1 code implementation • 25 Aug 2021 • Angela Castillo, María Escobar, Juan C. Pérez, Andrés Romero, Radu Timofte, Luc van Gool, Pablo Arbeláez
Instead of learning a dataset-specific degradation, we employ adversarial attacks to create difficult examples that target the model's weaknesses.
1 code implementation • 29 Jul 2021 • Juan C. Pérez, Motasem Alfarra, Guillaume Jeanneret, Laura Rueda, Ali Thabet, Bernard Ghanem, Pablo Arbeláez
Deep learning models are prone to being fooled by imperceptible perturbations known as adversarial attacks.
2 code implementations • 9 Jul 2021 • Laura Daza, Juan C. Pérez, Pablo Arbeláez
The reliability of Deep Learning systems depends on their accuracy but also on their robustness against adversarial perturbations to the input data.
no code implementations • 24 Mar 2021 • Arnaud Huaulmé, Duygu Sarikaya, Kévin Le Mut, Fabien Despinoy, Yonghao Long, Qi Dou, Chin-Boon Chng, Wenjun Lin, Satoshi Kondo, Laura Bravo-Sánchez, Pablo Arbeláez, Wolfgang Reiter, Manoru Mitsuishi, Kanako Harada, Pierre Jannin
The best models achieved more than 95% AD-Accuracy for phase recognition, 80% for step recognition, 60% for activity recognition, and 75% for all granularity levels.
1 code implementation • 10 Jul 2020 • Cristina González, María Escobar, Laura Daza, Felipe Torres, Gustavo Triana, Pablo Arbeláez
With this lack of available methods as motivation, we present SIMBA: Specific Identity Markers for Bone Age Assessment.
1 code implementation • 23 Jun 2020 • Mauricio Neira, Catalina Gómez, John F. Suárez-Pérez, Diego A. Gómez, Juan Pablo Reyes, Marcela Hernández Hoyos, Pablo Arbeláez, Jaime E. Forero-Romero
It achieves an F1-score of 96. 25% in the binary classification and 52. 79% in the eight-class classification.
1 code implementation • 13 Jun 2020 • Motasem Alfarra, Juan C. Pérez, Adel Bibi, Ali Thabet, Pablo Arbeláez, Bernard Ghanem
This paper studies how encouraging semantically-aligned features during deep neural network training can increase network robustness.
no code implementations • 28 Apr 2020 • Catalina Gómez, Mauricio Neira, Marcela Hernández Hoyos, Pablo Arbeláez, Jaime E. Forero-Romero
Supervised classification of temporal sequences of astronomical images into meaningful transient astrophysical phenomena has been considered a hard problem because it requires the intervention of human experts.
no code implementations • 23 Mar 2020 • Tobias Ross, Annika Reinke, Peter M. Full, Martin Wagner, Hannes Kenngott, Martin Apitz, Hellena Hempe, Diana Mindroc Filimon, Patrick Scholz, Thuy Nuong Tran, Pierangela Bruno, Pablo Arbeláez, Gui-Bin Bian, Sebastian Bodenstedt, Jon Lindström Bolmgren, Laura Bravo-Sánchez, Hua-Bin Chen, Cristina González, Dong Guo, Pål Halvorsen, Pheng-Ann Heng, Enes Hosgor, Zeng-Guang Hou, Fabian Isensee, Debesh Jha, Tingting Jiang, Yueming Jin, Kadir Kirtac, Sabrina Kletz, Stefan Leger, Zhixuan Li, Klaus H. Maier-Hein, Zhen-Liang Ni, Michael A. Riegler, Klaus Schoeffmann, Ruohua Shi, Stefanie Speidel, Michael Stenzel, Isabell Twick, Gutai Wang, Jiacheng Wang, Liansheng Wang, Lu Wang, Yu-Jie Zhang, Yan-Jie Zhou, Lei Zhu, Manuel Wiesenfarth, Annette Kopp-Schneider, Beat P. Müller-Stich, Lena Maier-Hein
The validation of the competing methods for the three tasks (binary segmentation, multi-instance detection and multi-instance segmentation) was performed in three different stages with an increasing domain gap between the training and the test data.
1 code implementation • ECCV 2020 • Juan C. Pérez, Motasem Alfarra, Guillaume Jeanneret, Adel Bibi, Ali Thabet, Bernard Ghanem, Pablo Arbeláez
We revisit the benefits of merging classical vision concepts with deep learning models.
1 code implementation • 10 Dec 2018 • Andrés Romero, Pablo Arbeláez, Luc van Gool, Radu Timofte
This problem is highly challenging due to three main reasons: (i) unpaired datasets, (ii) multiple attributes, and (iii) the multimodality (e. g., style) associated with the translation.
2 code implementations • ECCV 2018 • Edgar Margffoy-Tuay, Juan C. Pérez, Emilio Botero, Pablo Arbeláez
We address the problem of segmenting an object given a natural language expression that describes it.
no code implementations • 3 Apr 2017 • Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, Luc van Gool
The DAVIS Challenge follows up on the recent publication of DAVIS (Densely-Annotated VIdeo Segmentation), which has fostered the development of several novel state-of-the-art video object segmentation techniques.
2 code implementations • 17 Jan 2017 • Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez, Luc van Gool
We present Convolutional Oriented Boundaries (COB), which produces multiscale oriented contours and region hierarchies starting from generic image classification Convolutional Neural Networks (CNNs).
1 code implementation • 5 Sep 2016 • Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez, Luc van Gool
This paper presents Deep Retinal Image Understanding (DRIU), a unified framework of retinal image analysis that provides both retinal vessel and optic disc segmentation.
1 code implementation • 9 Aug 2016 • Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez, Luc van Gool
We present Convolutional Oriented Boundaries (COB), which produces multiscale oriented contours and region hierarchies starting from generic image classification Convolutional Neural Networks (CNNs).
no code implementations • 14 Aug 2015 • Jordi Pont-Tuset, Pablo Arbeláez, Luc van Gool
The recently presented COCO detection challenge will most probably be the reference benchmark in object detection in the next years.
no code implementations • 16 Feb 2015 • Saurabh Gupta, Pablo Arbeláez, Ross Girshick, Jitendra Malik
The goal of this work is to replace objects in an RGB-D scene with corresponding 3D models from a library.
6 code implementations • CVPR 2015 • Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik
Recognition algorithms based on convolutional networks (CNNs) typically use the output of the last layer as feature representation.
no code implementations • 22 Jul 2014 • Saurabh Gupta, Ross Girshick, Pablo Arbeláez, Jitendra Malik
In this paper we study the problem of object detection for RGB-D images using semantically rich image and depth features.
Ranked #6 on
Object Detection In Indoor Scenes
on SUN RGB-D
no code implementations • 7 Jul 2014 • Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik
Unlike classical semantic segmentation, we require individual object instances.
Ranked #4 on
Object Detection
on PASCAL VOC 2012