no code implementations • 6 Jul 2021 • Shruthi Chari, Prithwish Chakraborty, Mohamed Ghalwash, Oshani Seneviratne, Elif K. Eyigoz, Daniel M. Gruen, Fernando Suarez Saiz, Ching-Hua Chen, Pablo Meyer Rojas, Deborah L. McGuinness
To enable the adoption of the ever improving AI risk prediction models in practice, we have begun to explore techniques to contextualize such models along three dimensions of interest: the patients' clinical state, AI predictions about their risk of complications, and algorithmic explanations supporting the predictions.