Search Results for author: Pang Wei Koh

Found 16 papers, 13 papers with code

Overparameterization hurts worst-group accuracy with spurious correlations

no code implementations ICML 2020 Shiori Sagawa, aditi raghunathan, Pang Wei Koh, Percy Liang

Increasing model capacity well beyond the point of zero training error has been observed to improve average test accuracy.

Just Train Twice: Improving Group Robustness without Training Group Information

1 code implementation19 Jul 2021 Evan Zheran Liu, Behzad Haghgoo, Annie S. Chen, aditi raghunathan, Pang Wei Koh, Shiori Sagawa, Percy Liang, Chelsea Finn

Standard training via empirical risk minimization (ERM) can produce models that achieve high accuracy on average but low accuracy on certain groups, especially in the presence of spurious correlations between the input and label.

Image Classification

Selective Classification Can Magnify Disparities Across Groups

no code implementations ICLR 2021 Erik Jones, Shiori Sagawa, Pang Wei Koh, Ananya Kumar, Percy Liang

In this paper, we find that while selective classification can improve average accuracies, it can simultaneously magnify existing accuracy disparities between various groups within a population, especially in the presence of spurious correlations.

Classification General Classification

Concept Bottleneck Models

2 code implementations ICML 2020 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, Percy Liang

We seek to learn models that we can interact with using high-level concepts: if the model did not think there was a bone spur in the x-ray, would it still predict severe arthritis?

An Investigation of Why Overparameterization Exacerbates Spurious Correlations

2 code implementations9 May 2020 Shiori Sagawa, aditi raghunathan, Pang Wei Koh, Percy Liang

We study why overparameterization -- increasing model size well beyond the point of zero training error -- can hurt test error on minority groups despite improving average test error when there are spurious correlations in the data.

ExpBERT: Representation Engineering with Natural Language Explanations

2 code implementations ACL 2020 Shikhar Murty, Pang Wei Koh, Percy Liang

Suppose we want to specify the inductive bias that married couples typically go on honeymoons for the task of extracting pairs of spouses from text.

Relation Extraction

Temporal FiLM: Capturing Long-Range Sequence Dependencies with Feature-Wise Modulations

1 code implementation14 Sep 2019 Sawyer Birnbaum, Volodymyr Kuleshov, Zayd Enam, Pang Wei Koh, Stefano Ermon

Learning representations that accurately capture long-range dependencies in sequential inputs -- including text, audio, and genomic data -- is a key problem in deep learning.

Audio Super-Resolution Super-Resolution +1

Inferring Multidimensional Rates of Aging from Cross-Sectional Data

1 code implementation12 Jul 2018 Emma Pierson, Pang Wei Koh, Tatsunori Hashimoto, Daphne Koller, Jure Leskovec, Nicholas Eriksson, Percy Liang

Motivated by the study of human aging, we present an interpretable latent-variable model that learns temporal dynamics from cross-sectional data.

Time Series

Certified Defenses for Data Poisoning Attacks

1 code implementation NeurIPS 2017 Jacob Steinhardt, Pang Wei Koh, Percy Liang

Machine learning systems trained on user-provided data are susceptible to data poisoning attacks, whereby malicious users inject false training data with the aim of corrupting the learned model.

Data Poisoning

Cannot find the paper you are looking for? You can Submit a new open access paper.