no code implementations • ICML 2020 • Shiori Sagawa, aditi raghunathan, Pang Wei Koh, Percy Liang
Increasing model capacity well beyond the point of zero training error has been observed to improve average test accuracy.
no code implementations • 22 Dec 2022 • Blair Bilodeau, Natasha Jaques, Pang Wei Koh, Been Kim
Despite a sea of interpretability methods that can produce plausible explanations, the field has also empirically seen many failure cases of such methods.
1 code implementation • 25 Nov 2022 • Huaxiu Yao, Caroline Choi, Bochuan Cao, Yoonho Lee, Pang Wei Koh, Chelsea Finn
Temporal shifts -- distribution shifts arising from the passage of time -- often occur gradually and have the additional structure of timestamp metadata.
1 code implementation • ICLR 2022 • Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao, Sang Michael Xie, Kendrick Shen, Ananya Kumar, Weihua Hu, Michihiro Yasunaga, Henrik Marklund, Sara Beery, Etienne David, Ian Stavness, Wei Guo, Jure Leskovec, Kate Saenko, Tatsunori Hashimoto, Sergey Levine, Chelsea Finn, Percy Liang
Unlabeled data can be a powerful point of leverage for mitigating these distribution shifts, as it is frequently much more available than labeled data and can often be obtained from distributions beyond the source distribution as well.
no code implementations • 16 Aug 2021 • Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, aditi raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, Percy Liang
AI is undergoing a paradigm shift with the rise of models (e. g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks.
1 code implementation • 19 Jul 2021 • Evan Zheran Liu, Behzad Haghgoo, Annie S. Chen, aditi raghunathan, Pang Wei Koh, Shiori Sagawa, Percy Liang, Chelsea Finn
Standard training via empirical risk minimization (ERM) can produce models that achieve high accuracy on average but low accuracy on certain groups, especially in the presence of spurious correlations between the input and label.
Ranked #1 on
Out-of-Distribution Generalization
on ImageNet-W
1 code implementation • 9 Jul 2021 • John Miller, Rohan Taori, aditi raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar, Percy Liang, Yair Carmon, Ludwig Schmidt
For machine learning systems to be reliable, we must understand their performance in unseen, out-of-distribution environments.
5 code implementations • 14 Dec 2020 • Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne David, Ian Stavness, Wei Guo, Berton A. Earnshaw, Imran S. Haque, Sara Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, Percy Liang
Distribution shifts -- where the training distribution differs from the test distribution -- can substantially degrade the accuracy of machine learning (ML) systems deployed in the wild.
1 code implementation • ICLR 2021 • Erik Jones, Shiori Sagawa, Pang Wei Koh, Ananya Kumar, Percy Liang
In this paper, we find that while selective classification can improve average accuracies, it can simultaneously magnify existing accuracy disparities between various groups within a population, especially in the presence of spurious correlations.
3 code implementations • ICML 2020 • Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, Percy Liang
We seek to learn models that we can interact with using high-level concepts: if the model did not think there was a bone spur in the x-ray, would it still predict severe arthritis?
2 code implementations • 9 May 2020 • Shiori Sagawa, aditi raghunathan, Pang Wei Koh, Percy Liang
We study why overparameterization -- increasing model size well beyond the point of zero training error -- can hurt test error on minority groups despite improving average test error when there are spurious correlations in the data.
2 code implementations • ACL 2020 • Shikhar Murty, Pang Wei Koh, Percy Liang
Suppose we want to specify the inductive bias that married couples typically go on honeymoons for the task of extracting pairs of spouses from text.
no code implementations • 15 Apr 2020 • Miles Brundage, Shahar Avin, Jasmine Wang, Haydn Belfield, Gretchen Krueger, Gillian Hadfield, Heidy Khlaaf, Jingying Yang, Helen Toner, Ruth Fong, Tegan Maharaj, Pang Wei Koh, Sara Hooker, Jade Leung, Andrew Trask, Emma Bluemke, Jonathan Lebensbold, Cullen O'Keefe, Mark Koren, Théo Ryffel, JB Rubinovitz, Tamay Besiroglu, Federica Carugati, Jack Clark, Peter Eckersley, Sarah de Haas, Maritza Johnson, Ben Laurie, Alex Ingerman, Igor Krawczuk, Amanda Askell, Rosario Cammarota, Andrew Lohn, David Krueger, Charlotte Stix, Peter Henderson, Logan Graham, Carina Prunkl, Bianca Martin, Elizabeth Seger, Noa Zilberman, Seán Ó hÉigeartaigh, Frens Kroeger, Girish Sastry, Rebecca Kagan, Adrian Weller, Brian Tse, Elizabeth Barnes, Allan Dafoe, Paul Scharre, Ariel Herbert-Voss, Martijn Rasser, Shagun Sodhani, Carrick Flynn, Thomas Krendl Gilbert, Lisa Dyer, Saif Khan, Yoshua Bengio, Markus Anderljung
With the recent wave of progress in artificial intelligence (AI) has come a growing awareness of the large-scale impacts of AI systems, and recognition that existing regulations and norms in industry and academia are insufficient to ensure responsible AI development.
Computers and Society
7 code implementations • 20 Nov 2019 • Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, Percy Liang
Distributionally robust optimization (DRO) allows us to learn models that instead minimize the worst-case training loss over a set of pre-defined groups.
Ranked #1 on
Out-of-Distribution Generalization
on UrbanCars
1 code implementation • 14 Sep 2019 • Sawyer Birnbaum, Volodymyr Kuleshov, Zayd Enam, Pang Wei Koh, Stefano Ermon
Learning representations that accurately capture long-range dependencies in sequential inputs -- including text, audio, and genomic data -- is a key problem in deep learning.
Ranked #2 on
Audio Super-Resolution
on Voice Bank corpus (VCTK)
2 code implementations • NeurIPS 2019 • Pang Wei Koh, Kai-Siang Ang, Hubert H. K. Teo, Percy Liang
Influence functions estimate the effect of removing a training point on a model without the need to retrain.
2 code implementations • 2 Nov 2018 • Pang Wei Koh, Jacob Steinhardt, Percy Liang
In this paper, we develop three attacks that can bypass a broad range of common data sanitization defenses, including anomaly detectors based on nearest neighbors, training loss, and singular-value decomposition.
1 code implementation • 12 Jul 2018 • Emma Pierson, Pang Wei Koh, Tatsunori Hashimoto, Daphne Koller, Jure Leskovec, Nicholas Eriksson, Percy Liang
Motivated by the study of human aging, we present an interpretable latent-variable model that learns temporal dynamics from cross-sectional data.
2 code implementations • NeurIPS 2017 • Jacob Steinhardt, Pang Wei Koh, Percy Liang
Machine learning systems trained on user-provided data are susceptible to data poisoning attacks, whereby malicious users inject false training data with the aim of corrupting the learned model.
17 code implementations • ICML 2017 • Pang Wei Koh, Percy Liang
How can we explain the predictions of a black-box model?