no code implementations • 8 Dec 2021 • Partha Ghosh, Dominik Zietlow, Michael J. Black, Larry S. Davis, Xiaochen Hu
Our \textbf{InvGAN}, short for Invertible GAN, successfully embeds real images to the latent space of a high quality generative model.
1 code implementation • CVPR 2021 • Mohamed Hassan, Partha Ghosh, Joachim Tesch, Dimitrios Tzionas, Michael J. Black
Second, we show that POSA's learned representation of body-scene interaction supports monocular human pose estimation that is consistent with a 3D scene, improving on the state of the art.
1 code implementation • 31 Aug 2020 • Partha Ghosh, Pravir Singh Gupta, Roy Uziel, Anurag Ranjan, Michael Black, Timo Bolkart
Specifically, we condition StyleGAN2 on FLAME, a generative 3D face model.
3 code implementations • ICLR 2020 • Partha Ghosh, Mehdi S. M. Sajjadi, Antonio Vergari, Michael Black, Bernhard Schölkopf
Variational Autoencoders (VAEs) provide a theoretically-backed and popular framework for deep generative models.
no code implementations • 31 May 2018 • Partha Ghosh, Arpan Losalka, Michael J. Black
Our model has the form of a variational autoencoder, with a Gaussian mixture prior on the latent vector.
no code implementations • 10 Apr 2017 • Partha Ghosh, Jie Song, Emre Aksan, Otmar Hilliges
Furthermore, we propose new evaluation protocols to assess the quality of synthetic motion sequences even for which no ground truth data exists.