no code implementations • 20 Mar 2024 • Subhabrata Mukherjee, Paul Gamble, Markel Sanz Ausin, Neel Kant, Kriti Aggarwal, Neha Manjunath, Debajyoti Datta, Zhengliang Liu, Jiayuan Ding, Sophia Busacca, Cezanne Bianco, Swapnil Sharma, Rae Lasko, Michelle Voisard, Sanchay Harneja, Darya Filippova, Gerry Meixiong, Kevin Cha, Amir Youssefi, Meyhaa Buvanesh, Howard Weingram, Sebastian Bierman-Lytle, Harpreet Singh Mangat, Kim Parikh, Saad Godil, Alex Miller
We train our models on proprietary data, clinical care plans, healthcare regulatory documents, medical manuals, and other medical reasoning documents.
1 code implementation • 26 Dec 2022 • Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin Seneviratne, Paul Gamble, Chris Kelly, Nathaneal Scharli, Aakanksha Chowdhery, Philip Mansfield, Blaise Aguera y Arcas, Dale Webster, Greg S. Corrado, Yossi Matias, Katherine Chou, Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Rajkomar, Joelle Barral, Christopher Semturs, Alan Karthikesalingam, Vivek Natarajan
To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars.
Ranked #4 on Multiple Choice Question Answering (MCQA) on MedMCQA (Dev Set (Acc-%) metric)
no code implementations • 31 Oct 2019 • Michael Lomnitz, Nina Lopatina, Paul Gamble, Zigfried Hampel-Arias, Lucas Tindall, Felipe A. Mejia, Maria Alejandra Barrios
It is critical to understand the privacy and robustness vulnerabilities of machine learning models, as their implementation expands in scope.
no code implementations • 15 Jun 2019 • Felipe A. Mejia, Paul Gamble, Zigfried Hampel-Arias, Michael Lomnitz, Nina Lopatina, Lucas Tindall, Maria Alejandra Barrios
Adversarial training was introduced as a way to improve the robustness of deep learning models to adversarial attacks.
no code implementations • 27 Apr 2018 • Jeff Hetherly, Paul Gamble, Maria Barrios, Cory Stephenson, Karl Ni
We propose an algorithm to denoise speakers from a single microphone in the presence of non-stationary and dynamic noise.