1 code implementation • 12 Sep 2024 • Paul Häusner, Aleix Nieto Juscafresa, Jens Sjölund
Incomplete factorization methods are one of the most commonly applied algebraic preconditioners for sparse linear equation systems and are able to speed up the convergence of Krylov subspace methods.
1 code implementation • 26 Sep 2023 • Mathilde Papillon, Mustafa Hajij, Helen Jenne, Johan Mathe, Audun Myers, Theodore Papamarkou, Tolga Birdal, Tamal Dey, Tim Doster, Tegan Emerson, Gurusankar Gopalakrishnan, Devendra Govil, Aldo Guzmán-Sáenz, Henry Kvinge, Neal Livesay, Soham Mukherjee, Shreyas N. Samaga, Karthikeyan Natesan Ramamurthy, Maneel Reddy Karri, Paul Rosen, Sophia Sanborn, Robin Walters, Jens Agerberg, Sadrodin Barikbin, Claudio Battiloro, Gleb Bazhenov, Guillermo Bernardez, Aiden Brent, Sergio Escalera, Simone Fiorellino, Dmitrii Gavrilev, Mohammed Hassanin, Paul Häusner, Odin Hoff Gardaa, Abdelwahed Khamis, Manuel Lecha, German Magai, Tatiana Malygina, Rubén Ballester, Kalyan Nadimpalli, Alexander Nikitin, Abraham Rabinowitz, Alessandro Salatiello, Simone Scardapane, Luca Scofano, Suraj Singh, Jens Sjölund, Pavel Snopov, Indro Spinelli, Lev Telyatnikov, Lucia Testa, Maosheng Yang, Yixiao Yue, Olga Zaghen, Ali Zia, Nina Miolane
This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning.
1 code implementation • 25 May 2023 • Paul Häusner, Ozan Öktem, Jens Sjölund
The convergence of the conjugate gradient method for solving large-scale and sparse linear equation systems depends on the spectral properties of the system matrix, which can be improved by preconditioning.