Search Results for author: Pavan Kapanipathi

Found 25 papers, 4 papers with code

Combining Rules and Embeddings via Neuro-Symbolic AI for Knowledge Base Completion

no code implementations16 Sep 2021 Prithviraj Sen, Breno W. S. R. Carvalho, Ibrahim Abdelaziz, Pavan Kapanipathi, Francois Luus, Salim Roukos, Alexander Gray

Recent interest in Knowledge Base Completion (KBC) has led to a plethora of approaches based on reinforcement learning, inductive logic programming and graph embeddings.

Inductive logic programming Knowledge Base Completion

Learning to Guide a Saturation-Based Theorem Prover

no code implementations7 Jun 2021 Ibrahim Abdelaziz, Maxwell Crouse, Bassem Makni, Vernon Austil, Cristina Cornelio, Shajith Ikbal, Pavan Kapanipathi, Ndivhuwo Makondo, Kavitha Srinivas, Michael Witbrock, Achille Fokoue

In addition, to the best of our knowledge, TRAIL is the first reinforcement learning-based approach to exceed the performance of a state-of-the-art traditional theorem prover on a standard theorem proving benchmark (solving up to 17% more problems).

Automated Theorem Proving

Looking Beyond Sentence-Level Natural Language Inference for Question Answering and Text Summarization

no code implementations NAACL 2021 Anshuman Mishra, Dhruvesh Patel, Aparna Vijayakumar, Xiang Lorraine Li, Pavan Kapanipathi, Kartik Talamadupula

Natural Language Inference (NLI) has garnered significant attention in recent years; however, the promise of applying NLI breakthroughs to other downstream NLP tasks has remained unfulfilled.

Natural Language Inference Question Answering +2

Logic Embeddings for Complex Query Answering

2 code implementations28 Feb 2021 Francois Luus, Prithviraj Sen, Pavan Kapanipathi, Ryan Riegel, Ndivhuwo Makondo, Thabang Lebese, Alexander Gray

Answering logical queries over incomplete knowledge bases is challenging because: 1) it calls for implicit link prediction, and 2) brute force answering of existential first-order logic queries is exponential in the number of existential variables.

Knowledge Graphs Link Prediction

Reading Comprehension as Natural Language Inference: A Semantic Analysis

no code implementations4 Oct 2020 Anshuman Mishra, Dhruvesh Patel, Aparna Vijayakumar, Xiang Li, Pavan Kapanipathi, Kartik Talamadupula

We transform the one of the largest available MRC dataset (RACE) to an NLI form, and compare the performances of a state-of-the-art model (RoBERTa) on both these forms.

Natural Language Inference Question Answering +1

Looking Beyond Sentence-Level Natural Language Inference for Downstream Tasks

no code implementations18 Sep 2020 Anshuman Mishra, Dhruvesh Patel, Aparna Vijayakumar, Xiang Li, Pavan Kapanipathi, Kartik Talamadupula

In recent years, the Natural Language Inference (NLI) task has garnered significant attention, with new datasets and models achieving near human-level performance on it.

Natural Language Inference Question Answering +1

Type-augmented Relation Prediction in Knowledge Graphs

no code implementations16 Sep 2020 Zijun Cui, Pavan Kapanipathi, Kartik Talamadupula, Tian Gao, Qiang Ji

Knowledge graph completion (also known as relation prediction) is the task of inferring missing facts given existing ones.

Knowledge Graph Completion

Enhancing Text-based Reinforcement Learning Agents with Commonsense Knowledge

no code implementations2 May 2020 Keerthiram Murugesan, Mattia Atzeni, Pushkar Shukla, Mrinmaya Sachan, Pavan Kapanipathi, Kartik Talamadupula

In this paper, we consider the recent trend of evaluating progress on reinforcement learning technology by using text-based environments and games as evaluation environments.

Path-Based Contextualization of Knowledge Graphs for Textual Entailment

no code implementations5 Nov 2019 Kshitij Fadnis, Kartik Talamadupula, Pavan Kapanipathi, Haque Ishfaq, Salim Roukos, Achille Fokoue

In this paper, we introduce the problem of knowledge graph contextualization -- that is, given a specific NLP task, the problem of extracting meaningful and relevant sub-graphs from a given knowledge graph.

Knowledge Graphs Natural Language Inference

Infusing Knowledge into the Textual Entailment Task Using Graph Convolutional Networks

no code implementations5 Nov 2019 Pavan Kapanipathi, Veronika Thost, Siva Sankalp Patel, Spencer Whitehead, Ibrahim Abdelaziz, Avinash Balakrishnan, Maria Chang, Kshitij Fadnis, Chulaka Gunasekara, Bassem Makni, Nicholas Mattei, Kartik Talamadupula, Achille Fokoue

A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task.

Knowledge Graphs Natural Language Inference

Answering Science Exam Questions Using Query Rewriting with Background Knowledge

no code implementations15 Sep 2018 Ryan Musa, Xiaoyan Wang, Achille Fokoue, Nicholas Mattei, Maria Chang, Pavan Kapanipathi, Bassem Makni, Kartik Talamadupula, Michael Witbrock

Open-domain question answering (QA) is an important problem in AI and NLP that is emerging as a bellwether for progress on the generalizability of AI methods and techniques.

Information Retrieval Natural Language Inference +1

A Measure for Dialog Complexity and its Application in Streamlining Service Operations

no code implementations4 Aug 2017 Q. Vera Liao, Biplav Srivastava, Pavan Kapanipathi

Dialog is a natural modality for interaction between customers and businesses in the service industry.

Cannot find the paper you are looking for? You can Submit a new open access paper.