no code implementations • 25 Jun 2023 • Anna Bair, Hongxu Yin, Maying Shen, Pavlo Molchanov, Jose Alvarez
Robustness and compactness are two essential components of deep learning models that are deployed in the real world.
no code implementations • CVPR 2023 • Divyam Madaan, Hongxu Yin, Wonmin Byeon, Jan Kautz, Pavlo Molchanov
We propose a novel framework and a solution to tackle the continual learning (CL) problem with changing network architectures.
2 code implementations • 9 Jun 2023 • Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M. Alvarez, Jan Kautz, Pavlo Molchanov
At a high level, global self-attentions enable the efficient cross-window communication at lower costs.
1 code implementation • CVPR 2023 • Paul Micaelli, Arash Vahdat, Hongxu Yin, Jan Kautz, Pavlo Molchanov
Our Landmark DEQ (LDEQ) achieves state-of-the-art performance on the challenging WFLW facial landmark dataset, reaching $3. 92$ NME with fewer parameters and a training memory cost of $\mathcal{O}(1)$ in the number of recurrent modules.
Ranked #1 on
Face Alignment
on WFLW
no code implementations • 6 Dec 2022 • Umar Iqbal, Akin Caliskan, Koki Nagano, Sameh Khamis, Pavlo Molchanov, Jan Kautz
We propose RANA, a relightable and articulated neural avatar for the photorealistic synthesis of humans under arbitrary viewpoints, body poses, and lighting.
1 code implementation • 13 Oct 2022 • Maying Shen, Hongxu Yin, Pavlo Molchanov, Lei Mao, Jianna Liu, Jose M. Alvarez
We propose Hardware-Aware Latency Pruning (HALP) that formulates structural pruning as a global resource allocation optimization problem, aiming at maximizing the accuracy while constraining latency under a predefined budget on targeting device.
7 code implementations • 20 Jun 2022 • Ali Hatamizadeh, Hongxu Yin, Greg Heinrich, Jan Kautz, Pavlo Molchanov
Pre-trained GC ViT backbones in downstream tasks of object detection, instance segmentation, and semantic segmentation using MS COCO and ADE20K datasets outperform prior work consistently.
Ranked #114 on
Semantic Segmentation
on ADE20K
no code implementations • 29 Mar 2022 • Amit Raj, Umar Iqbal, Koki Nagano, Sameh Khamis, Pavlo Molchanov, James Hays, Jan Kautz
In this work, we present, DRaCoN, a framework for learning full-body volumetric avatars which exploits the advantages of both the 2D and 3D neural rendering techniques.
no code implementations • CVPR 2022 • Ali Hatamizadeh, Hongxu Yin, Holger Roth, Wenqi Li, Jan Kautz, Daguang Xu, Pavlo Molchanov
In this work we demonstrate the vulnerability of vision transformers (ViTs) to gradient-based inversion attacks.
no code implementations • 14 Feb 2022 • Ali Hatamizadeh, Hongxu Yin, Pavlo Molchanov, Andriy Myronenko, Wenqi Li, Prerna Dogra, Andrew Feng, Mona G. Flores, Jan Kautz, Daguang Xu, Holger R. Roth
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
1 code implementation • CVPR 2022 • Hongxu Yin, Arash Vahdat, Jose Alvarez, Arun Mallya, Jan Kautz, Pavlo Molchanov
A-ViT achieves this by automatically reducing the number of tokens in vision transformers that are processed in the network as inference proceeds.
1 code implementation • CVPR 2022 • Ye Yuan, Umar Iqbal, Pavlo Molchanov, Kris Kitani, Jan Kautz
Since the joint reconstruction of human motions and camera poses is underconstrained, we propose a global trajectory predictor that generates global human trajectories based on local body movements.
Ranked #1 on
Global 3D Human Pose Estimation
on EMDB
no code implementations • CVPR 2022 • Maying Shen, Pavlo Molchanov, Hongxu Yin, Jose M. Alvarez
Through extensive experiments on ImageNet, we show that EPI empowers a quick tracking of early training epochs suitable for pruning, offering same efficacy as an otherwise ``oracle'' grid-search that scans through epochs and requires orders of magnitude more compute.
1 code implementation • 20 Oct 2021 • Maying Shen, Hongxu Yin, Pavlo Molchanov, Lei Mao, Jianna Liu, Jose M. Alvarez
We propose Hardware-Aware Latency Pruning (HALP) that formulates structural pruning as a global resource allocation optimization problem, aiming at maximizing the accuracy while constraining latency under a predefined budget.
no code implementations • CVPR 2023 • Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo Molchanov, Hai Li, Jan Kautz
This work aims on challenging the common design philosophy of the Vision Transformer (ViT) model with uniform dimension across all the stacked blocks in a model stage, where we redistribute the parameters both across transformer blocks and between different structures within the block via the first systematic attempt on global structural pruning.
no code implementations • 29 Sep 2021 • Pavlo Molchanov, Jimmy Hall, Hongxu Yin, Jan Kautz, Nicolo Fusi, Arash Vahdat
In the second phase, it solves the combinatorial selection of efficient operations using a novel constrained integer linear optimization approach.
no code implementations • 13 Jul 2021 • Xin Dong, Hongxu Yin, Jose M. Alvarez, Jan Kautz, Pavlo Molchanov, H. T. Kung
Prior works usually assume that SC offers privacy benefits as only intermediate features, instead of private data, are shared from devices to the cloud.
no code implementations • 12 Jul 2021 • Pavlo Molchanov, Jimmy Hall, Hongxu Yin, Jan Kautz, Nicolo Fusi, Arash Vahdat
We analyze three popular network architectures: EfficientNetV1, EfficientNetV2 and ResNeST, and achieve accuracy improvement for all models (up to $3. 0\%$) when compressing larger models to the latency level of smaller models.
no code implementations • CVPR 2021 • Yerlan Idelbayev, Pavlo Molchanov, Maying Shen, Hongxu Yin, Miguel A. Carreira-Perpinan, Jose M. Alvarez
We study the problem of quantizing N sorted, scalar datapoints with a fixed codebook containing K entries that are allowed to be rescaled.
no code implementations • 10 Jun 2021 • Adrian Spurr, Pavlo Molchanov, Umar Iqbal, Jan Kautz, Otmar Hilliges
Hand pose estimation is difficult due to different environmental conditions, object- and self-occlusion as well as diversity in hand shape and appearance.
no code implementations • 27 Apr 2021 • Umar Iqbal, Kevin Xie, Yunrong Guo, Jan Kautz, Pavlo Molchanov
We present KAMA, a 3D Keypoint Aware Mesh Articulation approach that allows us to estimate a human body mesh from the positions of 3D body keypoints.
Ranked #35 on
3D Human Pose Estimation
on 3DPW
2 code implementations • CVPR 2021 • Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M. Alvarez, Jan Kautz, Pavlo Molchanov
In this work, we introduce GradInversion, using which input images from a larger batch (8 - 48 images) can also be recovered for large networks such as ResNets (50 layers), on complex datasets such as ImageNet (1000 classes, 224x224 px).
2 code implementations • CVPR 2021 • Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan Tremblay, Yashraj S. Narang, Karl Van Wyk, Umar Iqbal, Stan Birchfield, Jan Kautz, Dieter Fox
We introduce DexYCB, a new dataset for capturing hand grasping of objects.
no code implementations • ECCV 2020 • Anil Armagan, Guillermo Garcia-Hernando, Seungryul Baek, Shreyas Hampali, Mahdi Rad, Zhaohui Zhang, Shipeng Xie, Mingxiu Chen, Boshen Zhang, Fu Xiong, Yang Xiao, Zhiguo Cao, Junsong Yuan, Pengfei Ren, Weiting Huang, Haifeng Sun, Marek Hrúz, Jakub Kanis, Zdeněk Krňoul, Qingfu Wan, Shile Li, Linlin Yang, Dongheui Lee, Angela Yao, Weiguo Zhou, Sijia Mei, Yun-hui Liu, Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Philippe Weinzaepfel, Romain Brégier, Grégory Rogez, Vincent Lepetit, Tae-Kyun Kim
To address these issues, we designed a public challenge (HANDS'19) to evaluate the abilities of current 3D hand pose estimators (HPEs) to interpolate and extrapolate the poses of a training set.
no code implementations • ECCV 2020 • Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Otmar Hilliges, Jan Kautz
Estimating 3D hand pose from 2D images is a difficult, inverse problem due to the inherent scale and depth ambiguities.
no code implementations • CVPR 2020 • Umar Iqbal, Pavlo Molchanov, Jan Kautz
One major challenge for monocular 3D human pose estimation in-the-wild is the acquisition of training data that contains unconstrained images annotated with accurate 3D poses.
Monocular 3D Human Pose Estimation
Weakly-superavised 3D Human Pose Estimation
+1
no code implementations • 22 Feb 2020 • Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Christopher W. Fletcher, Sarita V. Adve, Charbel Sakr, Naresh Shanbhag, Pavlo Molchanov, Michael B. Sullivan, Timothy Tsai, Stephen W. Keckler
As Convolutional Neural Networks (CNNs) are increasingly being employed in safety-critical applications, it is important that they behave reliably in the face of hardware errors.
2 code implementations • CVPR 2020 • Hongxu Yin, Pavlo Molchanov, Zhizhong Li, Jose M. Alvarez, Arun Mallya, Derek Hoiem, Niraj K. Jha, Jan Kautz
We introduce DeepInversion, a new method for synthesizing images from the image distribution used to train a deep neural network.
3 code implementations • CVPR 2019 • Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, Jan Kautz
On ResNet-101, we achieve a 40% FLOPS reduction by removing 30% of the parameters, with a loss of 0. 02% in the top-1 accuracy on ImageNet.
1 code implementation • ICCV 2019 • Seonwook Park, Shalini De Mello, Pavlo Molchanov, Umar Iqbal, Otmar Hilliges, Jan Kautz
Inter-personal anatomical differences limit the accuracy of person-independent gaze estimation networks.
Ranked #1 on
Gaze Estimation
on MPII Gaze
(using extra training data)
1 code implementation • CVPR 2019 • Wei-Chih Hung, Varun Jampani, Sifei Liu, Pavlo Molchanov, Ming-Hsuan Yang, Jan Kautz
Parts provide a good intermediate representation of objects that is robust with respect to the camera, pose and appearance variations.
Ranked #3 on
Unsupervised Human Pose Estimation
on Tai-Chi-HD
Unsupervised Facial Landmark Detection
Unsupervised Human Pose Estimation
+2
no code implementations • 2 Apr 2019 • Eugene Vorontsov, Pavlo Molchanov, Christopher Beckham, Jan Kautz, Samuel Kadoury
Specifically, we propose a semi-supervised framework that employs unpaired image-to-image translation between two domains, presence vs. absence of cancer, as the unsupervised objective.
no code implementations • CVPR 2018 • Xiaodong Yang, Pavlo Molchanov, Jan Kautz
Recurrent neural networks (RNNs) have emerged as a powerful model for a broad range of machine learning problems that involve sequential data.
no code implementations • 26 Apr 2018 • Sam Leroux, Pavlo Molchanov, Pieter Simoens, Bart Dhoedt, Thomas Breuel, Jan Kautz
Deep residual networks (ResNets) made a recent breakthrough in deep learning.
no code implementations • ECCV 2018 • Umar Iqbal, Pavlo Molchanov, Thomas Breuel, Juergen Gall, Jan Kautz
Estimating the 3D pose of a hand is an essential part of human-computer interaction.
2 code implementations • CVPR 2018 • Shanxin Yuan, Guillermo Garcia-Hernando, Bjorn Stenger, Gyeongsik Moon, Ju Yong Chang, Kyoung Mu Lee, Pavlo Molchanov, Jan Kautz, Sina Honari, Liuhao Ge, Junsong Yuan, Xinghao Chen, Guijin Wang, Fan Yang, Kai Akiyama, Yang Wu, Qingfu Wan, Meysam Madadi, Sergio Escalera, Shile Li, Dongheui Lee, Iason Oikonomidis, Antonis Argyros, Tae-Kyun Kim
Official Torch7 implementation of "V2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map", CVPR 2018
Ranked #5 on
Hand Pose Estimation
on HANDS 2017
no code implementations • 30 Nov 2017 • Behrooz Mahasseni, Xiaodong Yang, Pavlo Molchanov, Jan Kautz
In this paper, we address the challenging problem of efficient temporal activity detection in untrimmed long videos.
no code implementations • CVPR 2018 • Sina Honari, Pavlo Molchanov, Stephen Tyree, Pascal Vincent, Christopher Pal, Jan Kautz
First, we propose the framework of sequential multitasking and explore it here through an architecture for landmark localization where training with class labels acts as an auxiliary signal to guide the landmark localization on unlabeled data.
Ranked #40 on
Face Alignment
on 300W
no code implementations • ICCV 2017 • Kihwan Kim, Jinwei Gu, Stephen Tyree, Pavlo Molchanov, Matthias Nießner, Jan Kautz
In addition, we have created a large synthetic dataset, SynBRDF, which comprises a total of $500$K RGBD images rendered with a physically-based ray tracer under a variety of natural illumination, covering $5000$ materials and $5000$ shapes.
9 code implementations • 19 Nov 2016 • Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, Jan Kautz
We propose a new criterion based on Taylor expansion that approximates the change in the cost function induced by pruning network parameters.
no code implementations • CVPR 2016 • Pavlo Molchanov, Xiaodong Yang, Shalini Gupta, Kihwan Kim, Stephen Tyree, Jan Kautz
Automatic detection and classification of dynamic hand gestures in real-world systems intended for human computer interaction is challenging as: 1) there is a large diversity in how people perform gestures, making detection and classification difficult; 2) the system must work online in order to avoid noticeable lag between performing a gesture and its classification; in fact, a negative lag (classification before the gesture is finished) is desirable, as feedback to the user can then be truly instantaneous.