Search Results for author: Pedro Ortega

Found 5 papers, 1 papers with code

Beyond Bayes-optimality: meta-learning what you know you don't know

no code implementations30 Sep 2022 Jordi Grau-Moya, Grégoire Delétang, Markus Kunesch, Tim Genewein, Elliot Catt, Kevin Li, Anian Ruoss, Chris Cundy, Joel Veness, Jane Wang, Marcus Hutter, Christopher Summerfield, Shane Legg, Pedro Ortega

This is in contrast to risk-sensitive agents, which additionally exploit the higher-order moments of the return, and ambiguity-sensitive agents, which act differently when recognizing situations in which they lack knowledge.

Decision Making Meta-Learning

Your Policy Regularizer is Secretly an Adversary

no code implementations23 Mar 2022 Rob Brekelmans, Tim Genewein, Jordi Grau-Moya, Grégoire Delétang, Markus Kunesch, Shane Legg, Pedro Ortega

Policy regularization methods such as maximum entropy regularization are widely used in reinforcement learning to improve the robustness of a learned policy.

A Nonparametric Conjugate Prior Distribution for the Maximizing Argument of a Noisy Function

no code implementations NeurIPS 2012 Pedro Ortega, Jordi Grau-Moya, Tim Genewein, David Balduzzi, Daniel Braun

We propose a novel Bayesian approach to solve stochastic optimization problems that involve finding extrema of noisy, nonlinear functions.

Stochastic Optimization

Cannot find the paper you are looking for? You can Submit a new open access paper.