no code implementations • 9 Jun 2023 • Yang Tian, Zeren Tan, Hedong Hou, Guoqi Li, Aohua Cheng, Yike Qiu, Kangyu Weng, Chun Chen, Pei Sun
These problems stem from the non-triviality and immaturity of the physical theories that analytically derive brain criticality and the statistic techniques that estimate brain criticality from empirical data.
no code implementations • 7 Apr 2023 • Kan Chen, Runzhou Ge, Hang Qiu, Rami Ai-Rfou, Charles R. Qi, Xuanyu Zhou, Zoey Yang, Scott Ettinger, Pei Sun, Zhaoqi Leng, Mustafa Mustafa, Ivan Bogun, Weiyue Wang, Mingxing Tan, Dragomir Anguelov
To study the effect of these modular approaches, design new paradigms that mitigate these limitations, and accelerate the development of end-to-end motion forecasting models, we augment the Waymo Open Motion Dataset (WOMD) with large-scale, high-quality, diverse LiDAR data for the motion forecasting task.
1 code implementation • 24 Jan 2023 • Wei Xiong, Xiaomeng Huang, Ziyang Zhang, Ruixuan Deng, Pei Sun, Yang Tian
In machine learning, numerous latest advances of solver designs are accomplished in developing neural operators, a kind of mesh-free approximators of the infinite-dimensional operators that map between different parameterization spaces of equation solutions.
1 code implementation • 3 Jan 2023 • Wei Xiong, Muyuan Ma, Xiaomeng Huang, Ziyang Zhang, Pei Sun, Yang Tian
To overcome this challenge, we present KoopmanLab, an efficient module of the Koopman neural operator family, for learning PDEs without analytic solutions or closed forms.
no code implementations • 4 Dec 2022 • Kangyu Weng, Aohua Cheng, Ziyang Zhang, Pei Sun, Yang Tian
Finally, we analyze our findings with information bottleneck theory to confirm the precise relations among dynamic isometry, mutual information maximization, and optimal channel properties in deep learning.
no code implementations • 24 Oct 2022 • Zhaoqi Leng, Guowang Li, Chenxi Liu, Ekin Dogus Cubuk, Pei Sun, Tong He, Dragomir Anguelov, Mingxing Tan
Data augmentations are important in training high-performance 3D object detectors for point clouds.
no code implementations • 13 Oct 2022 • Pei Sun, Mingxing Tan, Weiyue Wang, Chenxi Liu, Fei Xia, Zhaoqi Leng, Dragomir Anguelov
3D object detection in point clouds is a core component for modern robotics and autonomous driving systems.
no code implementations • 10 Oct 2022 • Chenxi Liu, Zhaoqi Leng, Pei Sun, Shuyang Cheng, Charles R. Qi, Yin Zhou, Mingxing Tan, Dragomir Anguelov
Developing neural models that accurately understand objects in 3D point clouds is essential for the success of robotics and autonomous driving.
no code implementations • 13 Jul 2022 • Yang Tian, Guoqi Li, Pei Sun
The brain works as a dynamic system to process information.
no code implementations • 21 Apr 2022 • Yang Tian, Hedong Hou, Yaoyuan Wang, Ziyang Zhang, Pei Sun
Information transfer between coupled stochastic dynamics, measured by transfer entropy and information flow, is suggested as a physical process underlying the causal relation of systems.
no code implementations • 19 Apr 2022 • Xiaofei Ge, Kaichao You, Zeren Tan, Hedong Hou, Yang Tian, Pei Sun
We anticipate our approach to be a general formalism to portray RNA virus evolution and help identify potential virus lineages to be concerned.
no code implementations • CVPR 2021 • Yuning Chai, Pei Sun, Jiquan Ngiam, Weiyue Wang, Benjamin Caine, Vijay Vasudevan, Xiao Zhang, Dragomir Anguelov
3D object detection is vital for many robotics applications.
no code implementations • CVPR 2021 • Pei Sun, Weiyue Wang, Yuning Chai, Gamaleldin Elsayed, Alex Bewley, Xiao Zhang, Cristian Sminchisescu, Dragomir Anguelov
These larger detection ranges require more efficient and accurate detection models.
no code implementations • 20 Apr 2021 • Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan, Yuning Chai, Ben Sapp, Charles Qi, Yin Zhou, Zoey Yang, Aurelien Chouard, Pei Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander McCauley, Jonathon Shlens, Dragomir Anguelov
Furthermore, we introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models.
no code implementations • CVPR 2021 • Charles R. Qi, Yin Zhou, Mahyar Najibi, Pei Sun, Khoa Vo, Boyang Deng, Dragomir Anguelov
While current 3D object recognition research mostly focuses on the real-time, onboard scenario, there are many offboard use cases of perception that are largely under-explored, such as using machines to automatically generate high-quality 3D labels.
no code implementations • ICCV 2021 • Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan, Yuning Chai, Ben Sapp, Charles R. Qi, Yin Zhou, Zoey Yang, Aurelien Chouard, Pei Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander McCauley, Jonathon Shlens, Dragomir Anguelov
Furthermore, we introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models.
1 code implementation • 20 May 2020 • Alex Bewley, Pei Sun, Thomas Mensink, Dragomir Anguelov, Cristian Sminchisescu
This paper presents a novel 3D object detection framework that processes LiDAR data directly on its native representation: range images.
no code implementations • CVPR 2020 • Zhenpei Yang, Yuning Chai, Dragomir Anguelov, Yin Zhou, Pei Sun, Dumitru Erhan, Sean Rafferty, Henrik Kretzschmar
In such scenarios, the ability to accurately simulate the vehicle sensors such as cameras, lidar or radar is essential.
8 code implementations • CVPR 2020 • Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Sheng Zhao, Shuyang Cheng, Yu Zhang, Jonathon Shlens, Zhifeng Chen, Dragomir Anguelov
In an effort to help align the research community's contributions with real-world self-driving problems, we introduce a new large scale, high quality, diverse dataset.
no code implementations • 15 Oct 2019 • Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang Gao, Tom Ouyang, James Guo, Jiquan Ngiam, Vijay Vasudevan
In this paper, we aim to synergize the birds-eye view and the perspective view and propose a novel end-to-end multi-view fusion (MVF) algorithm, which can effectively learn to utilize the complementary information from both.
no code implementations • 29 Aug 2019 • Jiquan Ngiam, Benjamin Caine, Wei Han, Brandon Yang, Yuning Chai, Pei Sun, Yin Zhou, Xi Yi, Ouais Alsharif, Patrick Nguyen, Zhifeng Chen, Jonathon Shlens, Vijay Vasudevan
We show how our redesign---namely using only local information and using sampling instead of learned proposals---leads to a significantly more flexible and adaptable system: we demonstrate how we can vary the computational cost of a single trained StarNet without retraining, and how we can target proposals towards areas of interest with priors and heuristics.