Search Results for author: Pengjie Ren

Found 85 papers, 60 papers with code

Enhancing Multi-hop Reasoning through Knowledge Erasure in Large Language Model Editing

no code implementations22 Aug 2024 Mengqi Zhang, Bowen Fang, Qiang Liu, Pengjie Ren, Shu Wu, Zhumin Chen, Liang Wang

Building on the validated hypothesis, we propose a novel knowledge editing method that incorporates a Knowledge Erasure mechanism for Large language model Editing (KELE).

knowledge editing Language Modelling +1

Chain-of-Strategy Planning with LLMs: Aligning the Generation of Psychotherapy Dialogue with Strategy in Motivational Interviewing

no code implementations12 Aug 2024 Xin Sun, Xiao Tang, Abdallah El Ali, Zhuying Li, Xiaoyu Shen, Pengjie Ren, Jan de Wit, Jiahuan Pei, Jos A. Bosch

Our findings demonstrate the potential of LLMs in producing strategically aligned dialogues and suggest directions for practical applications in psychotherapeutic settings.

Dialogue Generation

Generate-then-Ground in Retrieval-Augmented Generation for Multi-hop Question Answering

no code implementations21 Jun 2024 Zhengliang Shi, Weiwei Sun, Shen Gao, Pengjie Ren, Zhumin Chen, Zhaochun Ren

Multi-Hop Question Answering (MHQA) tasks present a significant challenge for large language models (LLMs) due to the intensive knowledge required.

Multi-hop Question Answering Question Answering +1

ExcluIR: Exclusionary Neural Information Retrieval

1 code implementation26 Apr 2024 WenHao Zhang, Mengqi Zhang, Shiguang Wu, Jiahuan Pei, Zhaochun Ren, Maarten de Rijke, Zhumin Chen, Pengjie Ren

However, in information retrieval community, there is little research on exclusionary retrieval, where users express what they do not want in their queries.

Information Retrieval Retrieval

Offline Trajectory Generalization for Offline Reinforcement Learning

no code implementations16 Apr 2024 Ziqi Zhao, Zhaochun Ren, Liu Yang, Fajie Yuan, Pengjie Ren, Zhumin Chen, Jun Ma, Xin Xin

Then we propose four strategies to use World Transformers to generate high-rewarded trajectory simulation by perturbing the offline data.

D4RL Data Augmentation +3

Generative Retrieval as Multi-Vector Dense Retrieval

1 code implementation31 Mar 2024 Shiguang Wu, Wenda Wei, Mengqi Zhang, Zhumin Chen, Jun Ma, Zhaochun Ren, Maarten de Rijke, Pengjie Ren

Both methods compute relevance as a sum of products of query and document vectors and an alignment matrix.

Decoder Retrieval

Enhanced Generative Recommendation via Content and Collaboration Integration

no code implementations27 Mar 2024 Yidan Wang, Zhaochun Ren, Weiwei Sun, Jiyuan Yang, Zhixiang Liang, Xin Chen, Ruobing Xie, Su Yan, Xu Zhang, Pengjie Ren, Zhumin Chen, Xin Xin

However, existing generative recommendation approaches still encounter challenges in (i) effectively integrating user-item collaborative signals and item content information within a unified generative framework, and (ii) executing an efficient alignment between content information and collaborative signals.

Collaborative Filtering Language Modelling +1

Uncovering Selective State Space Model's Capabilities in Lifelong Sequential Recommendation

1 code implementation25 Mar 2024 Jiyuan Yang, Yuanzi Li, Jingyu Zhao, Hanbing Wang, Muyang Ma, Jun Ma, Zhaochun Ren, Mengqi Zhang, Xin Xin, Zhumin Chen, Pengjie Ren

We conduct extensive experiments to evaluate the performance of representative sequential recommendation models in the setting of lifelong sequences.

2k Sequential Recommendation

Generative News Recommendation

1 code implementation6 Mar 2024 Shen Gao, Jiabao Fang, Quan Tu, Zhitao Yao, Zhumin Chen, Pengjie Ren, Zhaochun Ren

In this paper, we propose a novel generative news recommendation paradigm that includes two steps: (1) Leveraging the internal knowledge and reasoning capabilities of the Large Language Model (LLM) to perform high-level matching between candidate news and user representation; (2) Generating a coherent and logically structured narrative based on the associations between related news and user interests, thus engaging users in further reading of the news.

Language Modelling Large Language Model +1

Learning to Use Tools via Cooperative and Interactive Agents

1 code implementation5 Mar 2024 Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren, Suzan Verberne, Zhaochun Ren

To mitigate these problems, we propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately.

MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning

1 code implementation27 Feb 2024 Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi Zhang, Zhaochun Ren, Maarten de Rijke, Zhumin Chen, Jiahuan Pei

Parameter-efficient fine-tuning (PEFT) is a popular method for tailoring pre-trained large language models (LLMs), especially as the models' scale and the diversity of tasks increase.

Diversity Instruction Following +2

Knowledge Graph Enhanced Large Language Model Editing

no code implementations21 Feb 2024 Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren, Shu Wu, Zhumin Chen

Large language models (LLMs) are pivotal in advancing natural language processing (NLP) tasks, yet their efficacy is hampered by inaccuracies and outdated knowledge.

Knowledge Graphs Language Modelling +1

KnowTuning: Knowledge-aware Fine-tuning for Large Language Models

2 code implementations17 Feb 2024 Yougang Lyu, Lingyong Yan, Shuaiqiang Wang, Haibo Shi, Dawei Yin, Pengjie Ren, Zhumin Chen, Maarten de Rijke, Zhaochun Ren

To address these problems, we propose a knowledge-aware fine-tuning (KnowTuning) method to improve fine-grained and coarse-grained knowledge awareness of LLMs.

Question Answering

A Multi-Agent Conversational Recommender System

no code implementations2 Feb 2024 Jiabao Fang, Shen Gao, Pengjie Ren, Xiuying Chen, Suzan Verberne, Zhaochun Ren

First, we design a multi-agent act planning framework, which can control the dialogue flow based on four LLM-based agents.

Conversational Recommendation Recommendation Systems

Privacy-Preserving Sequential Recommendation with Collaborative Confusion

no code implementations9 Jan 2024 Wei Wang, Yujie Lin, Pengjie Ren, Zhumin Chen, Tsunenori Mine, Jianli Zhao, Qiang Zhao, Moyan Zhang, Xianye Ben, YuJun Li

Unlike existing research, we capture collaborative signals of neighbor interaction sequences and directly inject indistinguishable items into the target sequence before the recommendation process begins, thereby increasing the perplexity of the target sequence.

Collaborative Filtering Federated Learning +2

Self-Supervised Position Debiasing for Large Language Models

no code implementations2 Jan 2024 Zhongkun Liu, Zheng Chen, Mengqi Zhang, Zhaochun Ren, Pengjie Ren, Zhumin Chen

Existing debiasing methods for LLMs require external bias knowledge or annotated non-biased samples, which is lacking for position debiasing and impractical in reality.

Position

On the Effectiveness of Unlearning in Session-Based Recommendation

1 code implementation22 Dec 2023 Xin Xin, Liu Yang, Ziqi Zhao, Pengjie Ren, Zhumin Chen, Jun Ma, Zhaochun Ren

On the one hand, these approaches cannot achieve satisfying unlearning effects due to the collaborative correlations and sequential connections between the unlearning item and the remaining items in the session.

Session-Based Recommendations

Debiasing Sequential Recommenders through Distributionally Robust Optimization over System Exposure

1 code implementation12 Dec 2023 Jiyuan Yang, Yue Ding, Yidan Wang, Pengjie Ren, Zhumin Chen, Fei Cai, Jun Ma, Rui Zhang, Zhaochun Ren, Xin Xin

Then, we introduce a penalty to items with high exposure probability to avoid the overestimation of user preference for biased samples.

Sequential Recommendation

Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning

1 code implementation10 Dec 2023 Yougang Lyu, Jitai Hao, Zihan Wang, Kai Zhao, Shen Gao, Pengjie Ren, Zhumin Chen, Fang Wang, Zhaochun Ren

Multiple defendants in a criminal fact description generally exhibit complex interactions, and cannot be well handled by existing Legal Judgment Prediction (LJP) methods which focus on predicting judgment results (e. g., law articles, charges, and terms of penalty) for single-defendant cases.

Learning Robust Sequential Recommenders through Confident Soft Labels

1 code implementation4 Nov 2023 Shiguang Wu, Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, Maarten de Rijke, Zhaochun Ren

CSRec contains a teacher module that generates high-quality and confident soft labels and a student module that acts as the target recommender and is trained on the combination of dense, soft labels and sparse, one-hot labels.

Multi-class Classification Sequential Recommendation

Instruction Distillation Makes Large Language Models Efficient Zero-shot Rankers

1 code implementation2 Nov 2023 Weiwei Sun, Zheng Chen, Xinyu Ma, Lingyong Yan, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, Zhaochun Ren

Furthermore, our approach surpasses the performance of existing supervised methods like monoT5 and is on par with the state-of-the-art zero-shot methods.

Prompt Engineering

Generalizing Few-Shot Named Entity Recognizers to Unseen Domains with Type-Related Features

1 code implementation15 Oct 2023 Zihan Wang, Ziqi Zhao, Zhumin Chen, Pengjie Ren, Maarten de Rijke, Zhaochun Ren

To address this limitation, recent studies enable generalization to an unseen target domain with only a few labeled examples using data augmentation techniques.

Data Augmentation few-shot-ner +5

RADE: Reference-Assisted Dialogue Evaluation for Open-Domain Dialogue

no code implementations15 Sep 2023 Zhengliang Shi, Weiwei Sun, Shuo Zhang, Zhen Zhang, Pengjie Ren, Zhaochun Ren

To this end, we propose the Reference-Assisted Dialogue Evaluation (RADE) approach under the multi-task learning framework, which leverages the pre-created utterance as reference other than the gold response to relief the one-to-many problem.

Dialogue Evaluation Multi-Task Learning +1

Confucius: Iterative Tool Learning from Introspection Feedback by Easy-to-Difficult Curriculum

1 code implementation27 Aug 2023 Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang, Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, Zhaochun Ren

Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extending the capability of LLMs.

Intent-calibrated Self-training for Answer Selection in Open-domain Dialogues

no code implementations13 Jul 2023 Wentao Deng, Jiahuan Pei, Zhaochun Ren, Zhumin Chen, Pengjie Ren

Specifically, it improves 2. 06% and 1. 00% of F1 score on the two datasets, compared with the strongest baseline with only 5% labeled data.

Answer Selection

Answering Ambiguous Questions via Iterative Prompting

1 code implementation8 Jul 2023 Weiwei Sun, Hengyi Cai, Hongshen Chen, Pengjie Ren, Zhumin Chen, Maarten de Rijke, Zhaochun Ren

To provide feasible answers to an ambiguous question, one approach is to directly predict all valid answers, but this can struggle with balancing relevance and diversity.

Diversity Open-Domain Question Answering +1

Towards Explainable Conversational Recommender Systems

1 code implementation27 May 2023 Shuyu Guo, Shuo Zhang, Weiwei Sun, Pengjie Ren, Zhumin Chen, Zhaochun Ren

To achieve this, we conduct manual and automatic approaches to extend these dialogues and construct a new CRS dataset, namely Explainable Recommendation Dialogues (E-ReDial).

Explainable Recommendation Explanation Generation +2

UMSE: Unified Multi-scenario Summarization Evaluation

1 code implementation26 May 2023 Shen Gao, Zhitao Yao, Chongyang Tao, Xiuying Chen, Pengjie Ren, Zhaochun Ren, Zhumin Chen

Experimental results across three typical scenarios on the benchmark dataset SummEval indicate that our UMSE can achieve comparable performance with several existing strong methods which are specifically designed for each scenario.

Text Summarization

Contrastive State Augmentations for Reinforcement Learning-Based Recommender Systems

1 code implementation18 May 2023 Zhaochun Ren, Na Huang, Yidan Wang, Pengjie Ren, Jun Ma, Jiahuan Lei, Xinlei Shi, Hengliang Luo, Joemon M Jose, Xin Xin

For the second issue, we propose introducing contrastive signals between augmented states and the state randomly sampled from other sessions to improve the state representation learning further.

Recommendation Systems reinforcement-learning +2

Improving Implicit Feedback-Based Recommendation through Multi-Behavior Alignment

1 code implementation9 May 2023 Xin Xin, Xiangyuan Liu, Hanbing Wang, Pengjie Ren, Zhumin Chen, Jiahuan Lei, Xinlei Shi, Hengliang Luo, Joemon Jose, Maarten de Rijke, Zhaochun Ren

Recommender systems that learn from implicit feedback often use large volumes of a single type of implicit user feedback, such as clicks, to enhance the prediction of sparse target behavior such as purchases.

Denoising Open-Ended Question Answering +2

Generative Knowledge Selection for Knowledge-Grounded Dialogues

1 code implementation10 Apr 2023 Weiwei Sun, Pengjie Ren, Zhaochun Ren

However, such approaches neglect the interactions between snippets, leading to difficulties in inferring the meaning of snippets.

Response Generation

Modeling Sequential Recommendation as Missing Information Imputation

1 code implementation4 Jan 2023 Yujie Lin, Zhumin Chen, Zhaochun Ren, Chenyang Wang, Qiang Yan, Maarten de Rijke, Xiuzhen Cheng, Pengjie Ren

To address the limitation of sequential recommenders with side information, we define a way to fuse side information and alleviate the problem of missing side information by proposing a unified task, namely the missing information imputation (MII), which randomly masks some feature fields in a given sequence of items, including item IDs, and then forces a predictive model to recover them.

Imputation Sequential Recommendation

Variational Reasoning over Incomplete Knowledge Graphs for Conversational Recommendation

1 code implementation22 Dec 2022 XiaoYu Zhang, Xin Xin, Dongdong Li, Wenxuan Liu, Pengjie Ren, Zhumin Chen, Jun Ma, Zhaochun Ren

We propose a variational Bayesian method to approximate posterior distributions over dialogue-specific subgraphs, which not only leverages the dialogue corpus for restructuring missing entity relations but also dynamically selects knowledge based on the dialogue context.

Conversational Recommendation Knowledge Graphs +1

Contrastive Learning Reduces Hallucination in Conversations

1 code implementation20 Dec 2022 Weiwei Sun, Zhengliang Shi, Shen Gao, Pengjie Ren, Maarten de Rijke, Zhaochun Ren

MixCL effectively reduces the hallucination of LMs in conversations and achieves the highest performance among LM-based dialogue agents in terms of relevancy and factuality.

Contrastive Learning Hallucination

Feature-Level Debiased Natural Language Understanding

1 code implementation11 Dec 2022 Yougang Lyu, Piji Li, Yechang Yang, Maarten de Rijke, Pengjie Ren, Yukun Zhao, Dawei Yin, Zhaochun Ren

We also propose a dynamic negative sampling strategy to capture the dynamic influence of biases by employing a bias-only model to dynamically select the most similar biased negative samples.

Contrastive Learning Natural Language Understanding

On the User Behavior Leakage from Recommender System Exposure

1 code implementation16 Oct 2022 Xin Xin, Jiyuan Yang, Hanbing Wang, Jun Ma, Pengjie Ren, Hengliang Luo, Xinlei Shi, Zhumin Chen, Zhaochun Ren

Given the fact that system exposure data could be widely accessed from a relatively larger scope, we believe that the user past behavior privacy has a high risk of leakage in recommender systems.

Recommendation Systems

Debiasing Learning for Membership Inference Attacks Against Recommender Systems

1 code implementation24 Jun 2022 Zihan Wang, Na Huang, Fei Sun, Pengjie Ren, Zhumin Chen, Hengliang Luo, Maarten de Rijke, Zhaochun Ren

To address the above limitations, we propose a Debiasing Learning for Membership Inference Attacks against recommender systems (DL-MIA) framework that has four main components: (1) a difference vector generator, (2) a disentangled encoder, (3) a weight estimator, and (4) an attack model.

Recommendation Systems

Rethinking Reinforcement Learning for Recommendation: A Prompt Perspective

no code implementations15 Jun 2022 Xin Xin, Tiago Pimentel, Alexandros Karatzoglou, Pengjie Ren, Konstantina Christakopoulou, Zhaochun Ren

As reinforcement learning (RL) naturally fits this objective -- maximizing an user's reward per session -- it has become an emerging topic in recommender systems.

Recommendation Systems reinforcement-learning +1

Paying More Attention to Self-attention: Improving Pre-trained Language Models via Attention Guiding

no code implementations6 Apr 2022 Shanshan Wang, Zhumin Chen, Zhaochun Ren, Huasheng Liang, Qiang Yan, Pengjie Ren

In this work, we propose a simple yet effective attention guiding mechanism to improve the performance of PLM by encouraging attention towards the established goals.

Information Retrieval Retrieval

Metaphorical User Simulators for Evaluating Task-oriented Dialogue Systems

2 code implementations2 Apr 2022 Weiwei Sun, Shuyu Guo, Shuo Zhang, Pengjie Ren, Zhumin Chen, Maarten de Rijke, Zhaochun Ren

Employing existing user simulators to evaluate TDSs is challenging as user simulators are primarily designed to optimize dialogue policies for TDSs and have limited evaluation capabilities.

Conversational Recommendation Task-Oriented Dialogue Systems

Membership Inference Attacks Against Recommender Systems

1 code implementation16 Sep 2021 Minxing Zhang, Zhaochun Ren, Zihan Wang, Pengjie Ren, Zhumin Chen, Pengfei Hu, Yang Zhang

In this paper, we make the first attempt on quantifying the privacy leakage of recommender systems through the lens of membership inference.

Recommendation Systems

ReMeDi: Resources for Multi-domain, Multi-service, Medical Dialogues

1 code implementation1 Sep 2021 Guojun Yan, Jiahuan Pei, Pengjie Ren, Zhaochun Ren, Xin Xin, Huasheng Liang, Maarten de Rijke, Zhumin Chen

(1) there is no dataset with large-scale medical dialogues that covers multiple medical services and contains fine-grained medical labels (i. e., intents, actions, slots, values), and (2) there is no set of established benchmarks for MDSs for multi-domain, multi-service medical dialogues.

Benchmarking Contrastive Learning +2

A Human-machine Collaborative Framework for Evaluating Malevolence in Dialogues

1 code implementation ACL 2021 Yangjun Zhang, Pengjie Ren, Maarten de Rijke

HMCEval casts dialogue evaluation as a sample assignment problem, where we need to decide to assign a sample to a human or a machine for evaluation.

Dialogue Evaluation

Learning to Ask Conversational Questions by Optimizing Levenshtein Distance

1 code implementation ACL 2021 Zhongkun Liu, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Maarten de Rijke, Ming Zhou

Conversational Question Simplification (CQS) aims to simplify self-contained questions into conversational ones by incorporating some conversational characteristics, e. g., anaphora and ellipsis.

Few-Shot Electronic Health Record Coding through Graph Contrastive Learning

1 code implementation29 Jun 2021 Shanshan Wang, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Huasheng Liang, Qiang Yan, Evangelos Kanoulas, Maarten de Rijke

We seek to improve the performance for both frequent and rare ICD codes by using a contrastive graph-based EHR coding framework, CoGraph, which re-casts EHR coding as a few-shot learning task.

Contrastive Learning Few-Shot Learning

Improving Transformer-based Sequential Recommenders through Preference Editing

no code implementations23 Jun 2021 Muyang Ma, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Huasheng Liang, Jun Ma, Maarten de Rijke

By doing so, the SR model is able to learn how to identify common and unique user preferences, and thereby do better user preference extraction and representation.

Self-Supervised Learning Sequential Recommendation

Wizard of Search Engine: Access to Information Through Conversations with Search Engines

1 code implementation18 May 2021 Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zhumin Chen, Zhaochun Ren, Maarten de Rijke

(2) We release a benchmark dataset, called wizard of search engine (WISE), which allows for comprehensive and in-depth research on all aspects of CIS.

Intent Detection Keyphrase Extraction +1

A Cooperative Memory Network for Personalized Task-oriented Dialogue Systems with Incomplete User Profiles

1 code implementation16 Feb 2021 Jiahuan Pei, Pengjie Ren, Maarten de Rijke

We find that CoMemNN is able to enrich user profiles effectively, which results in an improvement of 3. 06% in terms of response selection accuracy compared to state-of-the-art methods.

Attribute Task-Oriented Dialogue Systems

EmpDG: Multi-resolution Interactive Empathetic Dialogue Generation

1 code implementation COLING 2020 Qintong Li, Hongshen Chen, Zhaochun Ren, Pengjie Ren, Zhaopeng Tu, Zhumin Chen

In response to this problem, we propose a multi-resolution adversarial model {--} EmpDG, to generate more empathetic responses.

Dialogue Generation

Mixed Information Flow for Cross-domain Sequential Recommendations

1 code implementation1 Dec 2020 Muyang Ma, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Lifan Zhao, Jun Ma, Maarten de Rijke

One of the key challenges in cross-domain sequential recommendation is to grasp and transfer the flow of information from multiple domains so as to promote recommendations in all domains.

Sequential Recommendation Transfer Learning

Knowledge Bridging for Empathetic Dialogue Generation

1 code implementation21 Sep 2020 Qintong Li, Piji Li, Zhaochun Ren, Pengjie Ren, Zhumin Chen

Finally, to generate the empathetic response, we propose an emotional cross-attention mechanism to learn the emotional dependencies from the emotional context graph.

Dialogue Generation

Diversifying Task-oriented Dialogue Response Generation with Prototype Guided Paraphrasing

1 code implementation7 Aug 2020 Phillip Lippe, Pengjie Ren, Hinda Haned, Bart Voorn, Maarten de Rijke

Instead of generating a response from scratch, P2-Net generates system responses by paraphrasing template-based responses.

Diversity Response Generation +1

Query Resolution for Conversational Search with Limited Supervision

1 code implementation24 May 2020 Nikos Voskarides, Dan Li, Pengjie Ren, Evangelos Kanoulas, Maarten de Rijke

Context from the conversational history can be used to arrive at a better expression of the current turn query, defined as the task of query resolution.

Conversational Search Passage Retrieval +1

Conversations with Search Engines: SERP-based Conversational Response Generation

1 code implementation29 Apr 2020 Pengjie Ren, Zhumin Chen, Zhaochun Ren, Evangelos Kanoulas, Christof Monz, Maarten de Rijke

In this paper, we address the problem of answering complex information needs by conversing conversations with search engines, in the sense that users can express their queries in natural language, and directly receivethe information they need from a short system response in a conversational manner.

Conversational Response Generation Conversational Search +1

A Neural Topical Expansion Framework for Unstructured Persona-oriented Dialogue Generation

2 code implementations6 Feb 2020 Minghong Xu, Piji Li, Haoran Yang, Pengjie Ren, Zhaochun Ren, Zhumin Chen, Jun Ma

To address this, we propose a neural topical expansion framework, namely Persona Exploration and Exploitation (PEE), which is able to extend the predefined user persona description with semantically correlated content before utilizing them to generate dialogue responses.

Descriptive Dialogue Generation

EmpDG: Multiresolution Interactive Empathetic Dialogue Generation

1 code implementation20 Nov 2019 Qintong Li, Hongshen Chen, Zhaochun Ren, Pengjie Ren, Zhaopeng Tu, Zhumin Chen

In response to this problem, we propose a multi-resolution adversarial model -- EmpDG, to generate more empathetic responses.

Dialogue Generation

Retrospective and Prospective Mixture-of-Generators for Task-oriented Dialogue Response Generation

2 code implementations19 Nov 2019 Jiahuan Pei, Pengjie Ren, Christof Monz, Maarten de Rijke

We propose a novel mixture-of-generators network (MoGNet) for DRG, where we assume that each token of a response is drawn from a mixture of distributions.

Response Generation Task-Oriented Dialogue Systems

Parallel Split-Join Networks for Shared-account Cross-domain Sequential Recommendations

no code implementations6 Oct 2019 Wenchao Sun, Muyang Ma, Pengjie Ren, Yujie Lin, Zhumin Chen, Zhaochun Ren, Jun Ma, Maarten de Rijke

We study sequential recommendation in a particularly challenging context, in which multiple individual users share asingle account (i. e., they have a shared account) and in which user behavior is available in multiple domains (i. e., recommendations are cross-domain).

Sequential Recommendation

Improving End-to-End Sequential Recommendations with Intent-aware Diversification

1 code implementation27 Aug 2019 Wanyu Chen, Pengjie Ren, Fei Cai, Maarten de Rijke

Then, we design an Intent-aware Diversity Promoting (IDP) loss to supervise the learning of the IIM module and force the model to take recommendation diversity into consideration during training.

Diversity Sequential Recommendation

Thinking Globally, Acting Locally: Distantly Supervised Global-to-Local Knowledge Selection for Background Based Conversation

1 code implementation26 Aug 2019 Pengjie Ren, Zhumin Chen, Christof Monz, Jun Ma, Maarten de Rijke

Given a conversational context and background knowledge, we first learn a topic transition vector to encode the most likely text fragments to be used in the next response, which is then used to guide the local KS at each decoding timestamp.

Improving Outfit Recommendation with Co-supervision of Fashion Generation

no code implementations24 Aug 2019 Yujie Lin, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Jun Ma, Maarten de Rijke

FARM improves visual understanding by incorporating the supervision of generation loss, which we hypothesize to be able to better encode aesthetic information.

RefNet: A Reference-aware Network for Background Based Conversation

1 code implementation18 Aug 2019 Chuan Meng, Pengjie Ren, Zhumin Chen, Christof Monz, Jun Ma, Maarten de Rijke

In this paper, we propose a Reference-aware Network (RefNet) to address the two issues.

Decoder

A Modular Task-oriented Dialogue System Using a Neural Mixture-of-Experts

1 code implementation10 Jul 2019 Jiahuan Pei, Pengjie Ren, Maarten de Rijke

We propose a neural Modular Task-oriented Dialogue System(MTDS) framework, in which a few expert bots are combined to generate the response for a given dialogue context.

Task-Oriented Dialogue Systems

Improving Background Based Conversation with Context-aware Knowledge Pre-selection

1 code implementation16 Jun 2019 Yangjun Zhang, Pengjie Ren, Maarten de Rijke

The latter generate responses thatare natural but not necessarily effective in leveraging background knowledge.

Improving Neural Response Diversity with Frequency-Aware Cross-Entropy Loss

2 code implementations25 Feb 2019 Shaojie Jiang, Pengjie Ren, Christof Monz, Maarten de Rijke

Specifically, we first analyze the influence of the commonly used Cross-Entropy (CE) loss function, and find that the CE loss function prefers high-frequency tokens, which results in low-diversity responses.

Diversity Response Generation

RepeatNet: A Repeat Aware Neural Recommendation Machine for Session-based Recommendation

1 code implementation6 Dec 2018 Pengjie Ren, Zhumin Chen, Jing Li, Zhaochun Ren, Jun Ma, Maarten de Rijke

RepeatNet integrates a regular neural recommendation approach in the decoder with a new repeat recommendation mechanism that can choose items from a user's history and recommends them at the right time.

Decoder Session-Based Recommendations

Neural Attentive Session-based Recommendation

3 code implementations13 Nov 2017 Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Jun Ma

Specifically, we explore a hybrid encoder with an attention mechanism to model the user's sequential behavior and capture the user's main purpose in the current session, which are combined as a unified session representation later.

Session-Based Recommendations

Neural Att entive Session-based Recommendation

1 code implementation CIKM 2017 Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, Jun Ma

Specifically, we explore a hybrid encoder with an attention mechanism to model the user’s sequential behavior and capture the user’s main purpose in the current session, which are combined as a unified session representation later.

Session-Based Recommendations

Entity Linking for Queries by Searching Wikipedia Sentences

no code implementations EMNLP 2017 Chuanqi Tan, Furu Wei, Pengjie Ren, Weifeng Lv, Ming Zhou

The key idea is to search sentences similar to a query from Wikipedia articles and directly use the human-annotated entities in the similar sentences as candidate entities for the query.

Entity Linking Word Embeddings

A Redundancy-Aware Sentence Regression Framework for Extractive Summarization

no code implementations COLING 2016 Pengjie Ren, Furu Wei, Zhumin Chen, Jun Ma, Ming Zhou

Existing sentence regression methods for extractive summarization usually model sentence importance and redundancy in two separate processes.

Document Summarization Extractive Summarization +3

Cannot find the paper you are looking for? You can Submit a new open access paper.