2 code implementations • ACL 2022 • Yangjun Zhang, Pengjie Ren, Wentao Deng, Zhumin Chen, Maarten Rijke
The detection of malevolent dialogue responses is attracting growing interest.
no code implementations • 22 Aug 2024 • Mengqi Zhang, Bowen Fang, Qiang Liu, Pengjie Ren, Shu Wu, Zhumin Chen, Liang Wang
Building on the validated hypothesis, we propose a novel knowledge editing method that incorporates a Knowledge Erasure mechanism for Large language model Editing (KELE).
no code implementations • 18 Aug 2024 • Zhiwei Xu, Hangyu Mao, Nianmin Zhang, Xin Xin, Pengjie Ren, Dapeng Li, Bin Zhang, Guoliang Fan, Zhumin Chen, Changwei Wang, Jiangjin Yin
In partially observable multi-agent systems, agents typically only have access to local observations.
no code implementations • 12 Aug 2024 • Xin Sun, Xiao Tang, Abdallah El Ali, Zhuying Li, Xiaoyu Shen, Pengjie Ren, Jan de Wit, Jiahuan Pei, Jos A. Bosch
Our findings demonstrate the potential of LLMs in producing strategically aligned dialogues and suggest directions for practical applications in psychotherapeutic settings.
no code implementations • 21 Jun 2024 • Zhengliang Shi, Weiwei Sun, Shen Gao, Pengjie Ren, Zhumin Chen, Zhaochun Ren
Multi-Hop Question Answering (MHQA) tasks present a significant challenge for large language models (LLMs) due to the intensive knowledge required.
1 code implementation • 7 Jun 2024 • Jitai Hao, Weiwei Sun, Xin Xin, Qi Meng, Zhumin Chen, Pengjie Ren, Zhaochun Ren
We store and update the parameters of larger adapters on the CPU.
no code implementations • 16 May 2024 • Jiahuan Pei, Irene Viola, Haochen Huang, Junxiao Wang, Moonisa Ahsan, Fanghua Ye, Jiang Yiming, Yao Sai, Di Wang, Zhumin Chen, Pengjie Ren, Pablo Cesar
We present a demonstration of a multimodal fine-grained training assistant for LEGO brick assembly in a pilot XR environment.
1 code implementation • 26 Apr 2024 • WenHao Zhang, Mengqi Zhang, Shiguang Wu, Jiahuan Pei, Zhaochun Ren, Maarten de Rijke, Zhumin Chen, Pengjie Ren
However, in information retrieval community, there is little research on exclusionary retrieval, where users express what they do not want in their queries.
no code implementations • 16 Apr 2024 • Ziqi Zhao, Zhaochun Ren, Liu Yang, Fajie Yuan, Pengjie Ren, Zhumin Chen, Jun Ma, Xin Xin
Then we propose four strategies to use World Transformers to generate high-rewarded trajectory simulation by perturbing the offline data.
1 code implementation • 31 Mar 2024 • Shiguang Wu, Wenda Wei, Mengqi Zhang, Zhumin Chen, Jun Ma, Zhaochun Ren, Maarten de Rijke, Pengjie Ren
Both methods compute relevance as a sum of products of query and document vectors and an alignment matrix.
no code implementations • 27 Mar 2024 • Yidan Wang, Zhaochun Ren, Weiwei Sun, Jiyuan Yang, Zhixiang Liang, Xin Chen, Ruobing Xie, Su Yan, Xu Zhang, Pengjie Ren, Zhumin Chen, Xin Xin
However, existing generative recommendation approaches still encounter challenges in (i) effectively integrating user-item collaborative signals and item content information within a unified generative framework, and (ii) executing an efficient alignment between content information and collaborative signals.
1 code implementation • 25 Mar 2024 • Jiyuan Yang, Yuanzi Li, Jingyu Zhao, Hanbing Wang, Muyang Ma, Jun Ma, Zhaochun Ren, Mengqi Zhang, Xin Xin, Zhumin Chen, Pengjie Ren
We conduct extensive experiments to evaluate the performance of representative sequential recommendation models in the setting of lifelong sequences.
1 code implementation • 6 Mar 2024 • Shen Gao, Jiabao Fang, Quan Tu, Zhitao Yao, Zhumin Chen, Pengjie Ren, Zhaochun Ren
In this paper, we propose a novel generative news recommendation paradigm that includes two steps: (1) Leveraging the internal knowledge and reasoning capabilities of the Large Language Model (LLM) to perform high-level matching between candidate news and user representation; (2) Generating a coherent and logically structured narrative based on the associations between related news and user interests, thus engaging users in further reading of the news.
1 code implementation • 5 Mar 2024 • Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren, Suzan Verberne, Zhaochun Ren
To mitigate these problems, we propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately.
1 code implementation • 27 Feb 2024 • Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi Zhang, Zhaochun Ren, Maarten de Rijke, Zhumin Chen, Jiahuan Pei
Parameter-efficient fine-tuning (PEFT) is a popular method for tailoring pre-trained large language models (LLMs), especially as the models' scale and the diversity of tasks increase.
no code implementations • 21 Feb 2024 • Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren, Shu Wu, Zhumin Chen
Large language models (LLMs) are pivotal in advancing natural language processing (NLP) tasks, yet their efficacy is hampered by inaccuracies and outdated knowledge.
2 code implementations • 17 Feb 2024 • Yougang Lyu, Lingyong Yan, Shuaiqiang Wang, Haibo Shi, Dawei Yin, Pengjie Ren, Zhumin Chen, Maarten de Rijke, Zhaochun Ren
To address these problems, we propose a knowledge-aware fine-tuning (KnowTuning) method to improve fine-grained and coarse-grained knowledge awareness of LLMs.
no code implementations • 2 Feb 2024 • Jiabao Fang, Shen Gao, Pengjie Ren, Xiuying Chen, Suzan Verberne, Zhaochun Ren
First, we design a multi-agent act planning framework, which can control the dialogue flow based on four LLM-based agents.
no code implementations • 9 Jan 2024 • Wei Wang, Yujie Lin, Pengjie Ren, Zhumin Chen, Tsunenori Mine, Jianli Zhao, Qiang Zhao, Moyan Zhang, Xianye Ben, YuJun Li
Unlike existing research, we capture collaborative signals of neighbor interaction sequences and directly inject indistinguishable items into the target sequence before the recommendation process begins, thereby increasing the perplexity of the target sequence.
no code implementations • 2 Jan 2024 • Zhongkun Liu, Zheng Chen, Mengqi Zhang, Zhaochun Ren, Pengjie Ren, Zhumin Chen
Existing debiasing methods for LLMs require external bias knowledge or annotated non-biased samples, which is lacking for position debiasing and impractical in reality.
1 code implementation • 22 Dec 2023 • Xin Xin, Liu Yang, Ziqi Zhao, Pengjie Ren, Zhumin Chen, Jun Ma, Zhaochun Ren
On the one hand, these approaches cannot achieve satisfying unlearning effects due to the collaborative correlations and sequential connections between the unlearning item and the remaining items in the session.
1 code implementation • 12 Dec 2023 • Jiyuan Yang, Yue Ding, Yidan Wang, Pengjie Ren, Zhumin Chen, Fei Cai, Jun Ma, Rui Zhang, Zhaochun Ren, Xin Xin
Then, we introduce a penalty to items with high exposure probability to avoid the overestimation of user preference for biased samples.
1 code implementation • 10 Dec 2023 • Yougang Lyu, Jitai Hao, Zihan Wang, Kai Zhao, Shen Gao, Pengjie Ren, Zhumin Chen, Fang Wang, Zhaochun Ren
Multiple defendants in a criminal fact description generally exhibit complex interactions, and cannot be well handled by existing Legal Judgment Prediction (LJP) methods which focus on predicting judgment results (e. g., law articles, charges, and terms of penalty) for single-defendant cases.
1 code implementation • 4 Nov 2023 • Shiguang Wu, Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, Maarten de Rijke, Zhaochun Ren
CSRec contains a teacher module that generates high-quality and confident soft labels and a student module that acts as the target recommender and is trained on the combination of dense, soft labels and sparse, one-hot labels.
1 code implementation • 2 Nov 2023 • Weiwei Sun, Zheng Chen, Xinyu Ma, Lingyong Yan, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, Zhaochun Ren
Furthermore, our approach surpasses the performance of existing supervised methods like monoT5 and is on par with the state-of-the-art zero-shot methods.
1 code implementation • 15 Oct 2023 • Zihan Wang, Ziqi Zhao, Zhumin Chen, Pengjie Ren, Maarten de Rijke, Zhaochun Ren
To address this limitation, recent studies enable generalization to an unseen target domain with only a few labeled examples using data augmentation techniques.
no code implementations • 15 Sep 2023 • Zhengliang Shi, Weiwei Sun, Shuo Zhang, Zhen Zhang, Pengjie Ren, Zhaochun Ren
To this end, we propose the Reference-Assisted Dialogue Evaluation (RADE) approach under the multi-task learning framework, which leverages the pre-created utterance as reference other than the gold response to relief the one-to-many problem.
1 code implementation • 27 Aug 2023 • Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang, Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, Zhaochun Ren
Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extending the capability of LLMs.
no code implementations • 19 Jul 2023 • Qingyao Ai, Ting Bai, Zhao Cao, Yi Chang, Jiawei Chen, Zhumin Chen, Zhiyong Cheng, Shoubin Dong, Zhicheng Dou, Fuli Feng, Shen Gao, Jiafeng Guo, Xiangnan He, Yanyan Lan, Chenliang Li, Yiqun Liu, Ziyu Lyu, Weizhi Ma, Jun Ma, Zhaochun Ren, Pengjie Ren, Zhiqiang Wang, Mingwen Wang, Ji-Rong Wen, Le Wu, Xin Xin, Jun Xu, Dawei Yin, Peng Zhang, Fan Zhang, Weinan Zhang, Min Zhang, Xiaofei Zhu
The research field of Information Retrieval (IR) has evolved significantly, expanding beyond traditional search to meet diverse user information needs.
no code implementations • 13 Jul 2023 • Wentao Deng, Jiahuan Pei, Zhaochun Ren, Zhumin Chen, Pengjie Ren
Specifically, it improves 2. 06% and 1. 00% of F1 score on the two datasets, compared with the strongest baseline with only 5% labeled data.
1 code implementation • 8 Jul 2023 • Weiwei Sun, Hengyi Cai, Hongshen Chen, Pengjie Ren, Zhumin Chen, Maarten de Rijke, Zhaochun Ren
To provide feasible answers to an ambiguous question, one approach is to directly predict all valid answers, but this can struggle with balancing relevance and diversity.
1 code implementation • 27 May 2023 • Shuyu Guo, Shuo Zhang, Weiwei Sun, Pengjie Ren, Zhumin Chen, Zhaochun Ren
To achieve this, we conduct manual and automatic approaches to extend these dialogues and construct a new CRS dataset, namely Explainable Recommendation Dialogues (E-ReDial).
1 code implementation • 26 May 2023 • Shen Gao, Zhitao Yao, Chongyang Tao, Xiuying Chen, Pengjie Ren, Zhaochun Ren, Zhumin Chen
Experimental results across three typical scenarios on the benchmark dataset SummEval indicate that our UMSE can achieve comparable performance with several existing strong methods which are specifically designed for each scenario.
1 code implementation • 18 May 2023 • Zhaochun Ren, Na Huang, Yidan Wang, Pengjie Ren, Jun Ma, Jiahuan Lei, Xinlei Shi, Hengliang Luo, Joemon M Jose, Xin Xin
For the second issue, we propose introducing contrastive signals between augmented states and the state randomly sampled from other sessions to improve the state representation learning further.
1 code implementation • 17 May 2023 • Zihan Wang, Kai Zhao, Yongquan He, Zhumin Chen, Pengjie Ren, Maarten de Rijke, Zhaochun Ren
Recent work on knowledge graph completion (KGC) focused on learning embeddings of entities and relations in knowledge graphs.
1 code implementation • 9 May 2023 • Xin Xin, Xiangyuan Liu, Hanbing Wang, Pengjie Ren, Zhumin Chen, Jiahuan Lei, Xinlei Shi, Hengliang Luo, Joemon Jose, Maarten de Rijke, Zhaochun Ren
Recommender systems that learn from implicit feedback often use large volumes of a single type of implicit user feedback, such as clicks, to enhance the prediction of sparse target behavior such as purchases.
1 code implementation • 19 Apr 2023 • Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, Zhaochun Ren
In this paper, we first investigate generative LLMs such as ChatGPT and GPT-4 for relevance ranking in IR.
1 code implementation • 10 Apr 2023 • Weiwei Sun, Pengjie Ren, Zhaochun Ren
However, such approaches neglect the interactions between snippets, leading to difficulties in inferring the meaning of snippets.
1 code implementation • 4 Mar 2023 • Yujie Lin, Chenyang Wang, Zhumin Chen, Zhaochun Ren, Xin Xin, Qiang Yan, Maarten de Rijke, Xiuzhen Cheng, Pengjie Ren
STEAM first corrects an input item sequence by adjusting the misclicked and/or missed items.
1 code implementation • 4 Jan 2023 • Yujie Lin, Zhumin Chen, Zhaochun Ren, Chenyang Wang, Qiang Yan, Maarten de Rijke, Xiuzhen Cheng, Pengjie Ren
To address the limitation of sequential recommenders with side information, we define a way to fuse side information and alleviate the problem of missing side information by proposing a unified task, namely the missing information imputation (MII), which randomly masks some feature fields in a given sequence of items, including item IDs, and then forces a predictive model to recover them.
1 code implementation • 22 Dec 2022 • XiaoYu Zhang, Xin Xin, Dongdong Li, Wenxuan Liu, Pengjie Ren, Zhumin Chen, Jun Ma, Zhaochun Ren
We propose a variational Bayesian method to approximate posterior distributions over dialogue-specific subgraphs, which not only leverages the dialogue corpus for restructuring missing entity relations but also dynamically selects knowledge based on the dialogue context.
1 code implementation • 20 Dec 2022 • Weiwei Sun, Zhengliang Shi, Shen Gao, Pengjie Ren, Maarten de Rijke, Zhaochun Ren
MixCL effectively reduces the hallucination of LMs in conversations and achieves the highest performance among LM-based dialogue agents in terms of relevancy and factuality.
1 code implementation • 11 Dec 2022 • Yougang Lyu, Piji Li, Yechang Yang, Maarten de Rijke, Pengjie Ren, Yukun Zhao, Dawei Yin, Zhaochun Ren
We also propose a dynamic negative sampling strategy to capture the dynamic influence of biases by employing a bias-only model to dynamically select the most similar biased negative samples.
1 code implementation • 16 Oct 2022 • Xin Xin, Jiyuan Yang, Hanbing Wang, Jun Ma, Pengjie Ren, Hengliang Luo, Xinlei Shi, Zhumin Chen, Zhaochun Ren
Given the fact that system exposure data could be widely accessed from a relatively larger scope, we believe that the user past behavior privacy has a high risk of leakage in recommender systems.
1 code implementation • 24 Jun 2022 • Zihan Wang, Na Huang, Fei Sun, Pengjie Ren, Zhumin Chen, Hengliang Luo, Maarten de Rijke, Zhaochun Ren
To address the above limitations, we propose a Debiasing Learning for Membership Inference Attacks against recommender systems (DL-MIA) framework that has four main components: (1) a difference vector generator, (2) a disentangled encoder, (3) a weight estimator, and (4) an attack model.
no code implementations • 15 Jun 2022 • Xin Xin, Tiago Pimentel, Alexandros Karatzoglou, Pengjie Ren, Konstantina Christakopoulou, Zhaochun Ren
As reinforcement learning (RL) naturally fits this objective -- maximizing an user's reward per session -- it has become an emerging topic in recommender systems.
no code implementations • 6 Apr 2022 • Shanshan Wang, Zhumin Chen, Zhaochun Ren, Huasheng Liang, Qiang Yan, Pengjie Ren
In this work, we propose a simple yet effective attention guiding mechanism to improve the performance of PLM by encouraging attention towards the established goals.
2 code implementations • 2 Apr 2022 • Weiwei Sun, Shuyu Guo, Shuo Zhang, Pengjie Ren, Zhumin Chen, Maarten de Rijke, Zhaochun Ren
Employing existing user simulators to evaluate TDSs is challenging as user simulators are primarily designed to optimize dialogue policies for TDSs and have limited evaluation capabilities.
Conversational Recommendation Task-Oriented Dialogue Systems
1 code implementation • 16 Sep 2021 • Minxing Zhang, Zhaochun Ren, Zihan Wang, Pengjie Ren, Zhumin Chen, Pengfei Hu, Yang Zhang
In this paper, we make the first attempt on quantifying the privacy leakage of recommender systems through the lens of membership inference.
1 code implementation • 1 Sep 2021 • Guojun Yan, Jiahuan Pei, Pengjie Ren, Zhaochun Ren, Xin Xin, Huasheng Liang, Maarten de Rijke, Zhumin Chen
(1) there is no dataset with large-scale medical dialogues that covers multiple medical services and contains fine-grained medical labels (i. e., intents, actions, slots, values), and (2) there is no set of established benchmarks for MDSs for multi-domain, multi-service medical dialogues.
1 code implementation • ACL 2021 • Yangjun Zhang, Pengjie Ren, Maarten de Rijke
HMCEval casts dialogue evaluation as a sample assignment problem, where we need to decide to assign a sample to a human or a machine for evaluation.
1 code implementation • ACL 2021 • Zhongkun Liu, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Maarten de Rijke, Ming Zhou
Conversational Question Simplification (CQS) aims to simplify self-contained questions into conversational ones by incorporating some conversational characteristics, e. g., anaphora and ellipsis.
1 code implementation • 29 Jun 2021 • Shanshan Wang, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Huasheng Liang, Qiang Yan, Evangelos Kanoulas, Maarten de Rijke
We seek to improve the performance for both frequent and rare ICD codes by using a contrastive graph-based EHR coding framework, CoGraph, which re-casts EHR coding as a few-shot learning task.
no code implementations • 23 Jun 2021 • Muyang Ma, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Huasheng Liang, Jun Ma, Maarten de Rijke
By doing so, the SR model is able to learn how to identify common and unique user preferences, and thereby do better user preference extraction and representation.
1 code implementation • 18 May 2021 • Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zhumin Chen, Zhaochun Ren, Maarten de Rijke
(2) We release a benchmark dataset, called wizard of search engine (WISE), which allows for comprehensive and in-depth research on all aspects of CIS.
1 code implementation • 13 May 2021 • Dongdong Li, Zhaochun Ren, Pengjie Ren, Zhumin Chen, Miao Fan, Jun Ma, Maarten de Rijke
We propose an end-to-end variational reasoning approach to medical dialogue generation.
no code implementations • 13 May 2021 • Zihan Wang, Hongye Song, Zhaochun Ren, Pengjie Ren, Zhumin Chen, Xiaozhong Liu, Hongsong Li, Maarten de Rijke
First, contract elements are far more fine-grained than named entities, which hinders the transfer of extractors.
Cross-Domain Named Entity Recognition Graph Neural Network +5
1 code implementation • 8 May 2021 • Weiwei Sun, Shuo Zhang, Krisztian Balog, Zhaochun Ren, Pengjie Ren, Zhumin Chen, Maarten de Rijke
The purpose of the task is to increase the evaluation power of user simulations and to make the simulation more human-like.
1 code implementation • 16 Feb 2021 • Jiahuan Pei, Pengjie Ren, Maarten de Rijke
We find that CoMemNN is able to enrich user profiles effectively, which results in an improvement of 3. 06% in terms of response selection accuracy compared to state-of-the-art methods.
1 code implementation • COLING 2020 • Qintong Li, Hongshen Chen, Zhaochun Ren, Pengjie Ren, Zhaopeng Tu, Zhumin Chen
In response to this problem, we propose a multi-resolution adversarial model {--} EmpDG, to generate more empathetic responses.
1 code implementation • 1 Dec 2020 • Muyang Ma, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Lifan Zhao, Jun Ma, Maarten de Rijke
One of the key challenges in cross-domain sequential recommendation is to grasp and transfer the flow of information from multiple domains so as to promote recommendations in all domains.
1 code implementation • 21 Sep 2020 • Qintong Li, Piji Li, Zhaochun Ren, Pengjie Ren, Zhumin Chen
Finally, to generate the empathetic response, we propose an emotional cross-attention mechanism to learn the emotional dependencies from the emotional context graph.
no code implementations • 21 Aug 2020 • Yangjun Zhang, Pengjie Ren, Maarten de Rijke
In this paper, we define the task of Malevolent Dialogue Response Detection and Classification (MDRDC).
1 code implementation • 7 Aug 2020 • Phillip Lippe, Pengjie Ren, Hinda Haned, Bart Voorn, Maarten de Rijke
Instead of generating a response from scratch, P2-Net generates system responses by paraphrasing template-based responses.
1 code implementation • 3 Aug 2020 • Anton Steenvoorden, Emanuele Di Gloria, Wanyu Chen, Pengjie Ren, Maarten de Rijke
Users prefer diverse recommendations over homogeneous ones.
1 code implementation • 24 May 2020 • Nikos Voskarides, Dan Li, Pengjie Ren, Evangelos Kanoulas, Maarten de Rijke
Context from the conversational history can be used to arrive at a better expression of the current turn query, defined as the task of query resolution.
1 code implementation • 29 Apr 2020 • Pengjie Ren, Zhumin Chen, Zhaochun Ren, Evangelos Kanoulas, Christof Monz, Maarten de Rijke
In this paper, we address the problem of answering complex information needs by conversing conversations with search engines, in the sense that users can express their queries in natural language, and directly receivethe information they need from a short system response in a conversational manner.
2 code implementations • 6 Feb 2020 • Minghong Xu, Piji Li, Haoran Yang, Pengjie Ren, Zhaochun Ren, Zhumin Chen, Jun Ma
To address this, we propose a neural topical expansion framework, namely Persona Exploration and Exploitation (PEE), which is able to extend the predefined user persona description with semantically correlated content before utilizing them to generate dialogue responses.
1 code implementation • 20 Nov 2019 • Qintong Li, Hongshen Chen, Zhaochun Ren, Pengjie Ren, Zhaopeng Tu, Zhumin Chen
In response to this problem, we propose a multi-resolution adversarial model -- EmpDG, to generate more empathetic responses.
2 code implementations • 19 Nov 2019 • Jiahuan Pei, Pengjie Ren, Christof Monz, Maarten de Rijke
We propose a novel mixture-of-generators network (MoGNet) for DRG, where we assume that each token of a response is drawn from a mixture of distributions.
no code implementations • 22 Oct 2019 • Yujie Lin, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Dongxiao Yu, Jun Ma, Maarten de Rijke, Xiuzhen Cheng
Given a user, we first obtain a collaborative vector by collecting useful information with a collaborative memory module.
no code implementations • 6 Oct 2019 • Wenchao Sun, Muyang Ma, Pengjie Ren, Yujie Lin, Zhumin Chen, Zhaochun Ren, Jun Ma, Maarten de Rijke
We study sequential recommendation in a particularly challenging context, in which multiple individual users share asingle account (i. e., they have a shared account) and in which user behavior is available in multiple domains (i. e., recommendations are cross-domain).
1 code implementation • 27 Aug 2019 • Wanyu Chen, Pengjie Ren, Fei Cai, Maarten de Rijke
Then, we design an Intent-aware Diversity Promoting (IDP) loss to supervise the learning of the IIM module and force the model to take recommendation diversity into consideration during training.
1 code implementation • 26 Aug 2019 • Pengjie Ren, Zhumin Chen, Christof Monz, Jun Ma, Maarten de Rijke
Given a conversational context and background knowledge, we first learn a topic transition vector to encode the most likely text fragments to be used in the next response, which is then used to guide the local KS at each decoding timestamp.
no code implementations • 24 Aug 2019 • Yujie Lin, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Jun Ma, Maarten de Rijke
FARM improves visual understanding by incorporating the supervision of generation loss, which we hypothesize to be able to better encode aesthetic information.
1 code implementation • 18 Aug 2019 • Chuan Meng, Pengjie Ren, Zhumin Chen, Christof Monz, Jun Ma, Maarten de Rijke
In this paper, we propose a Reference-aware Network (RefNet) to address the two issues.
1 code implementation • 10 Jul 2019 • Jiahuan Pei, Pengjie Ren, Maarten de Rijke
We propose a neural Modular Task-oriented Dialogue System(MTDS) framework, in which a few expert bots are combined to generate the response for a given dialogue context.
1 code implementation • 16 Jun 2019 • Yangjun Zhang, Pengjie Ren, Maarten de Rijke
The latter generate responses thatare natural but not necessarily effective in leveraging background knowledge.
2 code implementations • 25 Feb 2019 • Shaojie Jiang, Pengjie Ren, Christof Monz, Maarten de Rijke
Specifically, we first analyze the influence of the commonly used Cross-Entropy (CE) loss function, and find that the CE loss function prefers high-frequency tokens, which results in low-diversity responses.
1 code implementation • 6 Dec 2018 • Pengjie Ren, Zhumin Chen, Jing Li, Zhaochun Ren, Jun Ma, Maarten de Rijke
RepeatNet integrates a regular neural recommendation approach in the decoder with a new repeat recommendation mechanism that can choose items from a user's history and recommends them at the right time.
no code implementations • 23 Jun 2018 • Yujie Lin, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Jun Ma, Maarten de Rijke
The generated comments can be regarded as explanations for the recommendation results.
3 code implementations • 13 Nov 2017 • Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Jun Ma
Specifically, we explore a hybrid encoder with an attention mechanism to model the user's sequential behavior and capture the user's main purpose in the current session, which are combined as a unified session representation later.
Ranked #10 on Session-Based Recommendations on yoochoose1/64
1 code implementation • CIKM 2017 • Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, Jun Ma
Specifically, we explore a hybrid encoder with an attention mechanism to model the user’s sequential behavior and capture the user’s main purpose in the current session, which are combined as a unified session representation later.
no code implementations • EMNLP 2017 • Chuanqi Tan, Furu Wei, Pengjie Ren, Weifeng Lv, Ming Zhou
The key idea is to search sentences similar to a query from Wikipedia articles and directly use the human-annotated entities in the similar sentences as candidate entities for the query.
no code implementations • COLING 2016 • Pengjie Ren, Furu Wei, Zhumin Chen, Jun Ma, Ming Zhou
Existing sentence regression methods for extractive summarization usually model sentence importance and redundancy in two separate processes.