1 code implementation • 7 May 2022 • Xiaoqian Xu, Pengxu Wei, Weikai Chen, Mingzhi Mao, Liang Lin, Guanbin Li
To address this issue, we propose an unsupervised domain adaptation mechanism for real-world SR, named Dual ADversarial Adaptation (DADA), which only requires LR images in the target domain with available real paired data from a source camera.
2 code implementations • 20 Apr 2022 • Ren Yang, Radu Timofte, Meisong Zheng, Qunliang Xing, Minglang Qiao, Mai Xu, Lai Jiang, Huaida Liu, Ying Chen, Youcheng Ben, Xiao Zhou, Chen Fu, Pei Cheng, Gang Yu, Junyi Li, Renlong Wu, Zhilu Zhang, Wei Shang, Zhengyao Lv, Yunjin Chen, Mingcai Zhou, Dongwei Ren, Kai Zhang, WangMeng Zuo, Pavel Ostyakov, Vyal Dmitry, Shakarim Soltanayev, Chervontsev Sergey, Zhussip Magauiya, Xueyi Zou, Youliang Yan, Pablo Navarrete Michelini, Yunhua Lu, Diankai Zhang, Shaoli Liu, Si Gao, Biao Wu, Chengjian Zheng, Xiaofeng Zhang, Kaidi Lu, Ning Wang, Thuong Nguyen Canh, Thong Bach, Qing Wang, Xiaopeng Sun, Haoyu Ma, Shijie Zhao, Junlin Li, Liangbin Xie, Shuwei Shi, Yujiu Yang, Xintao Wang, Jinjin Gu, Chao Dong, Xiaodi Shi, Chunmei Nian, Dong Jiang, Jucai Lin, Zhihuai Xie, Mao Ye, Dengyan Luo, Liuhan Peng, Shengjie Chen, Qian Wang, Xin Liu, Boyang Liang, Hang Dong, Yuhao Huang, Kai Chen, Xingbei Guo, Yujing Sun, Huilei Wu, Pengxu Wei, Yulin Huang, Junying Chen, Ik Hyun Lee, Sunder Ali Khowaja, Jiseok Yoon
This challenge includes three tracks.
no code implementations • 7 Mar 2022 • Jingyu Zhuang, Ziliang Chen, Pengxu Wei, Guanbin Li, Liang Lin
In Open Set Domain Adaptation (OSDA), large amounts of target samples are drawn from the implicit categories that never appear in the source domain.
no code implementations • ICCV 2021 • Junkai Huang, Chaowei Fang, Weikai Chen, Zhenhua Chai, Xiaolin Wei, Pengxu Wei, Liang Lin, Guanbin Li
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
2 code implementations • ICCV 2021 • Hongliang He, Zhongyi Huang, Yao Ding, Guoli Song, Lin Wang, Qian Ren, Pengxu Wei, Zhiqiang Gao, Jie Chen
Specifically, we define the centripetal direction feature as a class of adjacent directions pointing to the nuclear center to represent the spatial relationship between pixels within the nucleus.
no code implementations • 25 Sep 2020 • Pengxu Wei, Hannan Lu, Radu Timofte, Liang Lin, WangMeng Zuo, Zhihong Pan, Baopu Li, Teng Xi, Yanwen Fan, Gang Zhang, Jingtuo Liu, Junyu Han, Errui Ding, Tangxin Xie, Liang Cao, Yan Zou, Yi Shen, Jialiang Zhang, Yu Jia, Kaihua Cheng, Chenhuan Wu, Yue Lin, Cen Liu, Yunbo Peng, Xueyi Zou, Zhipeng Luo, Yuehan Yao, Zhenyu Xu, Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Tongtong Zhao, Shanshan Zhao, Yoseob Han, Byung-Hoon Kim, JaeHyun Baek, Haoning Wu, Dejia Xu, Bo Zhou, Wei Guan, Xiaobo Li, Chen Ye, Hao Li, Yukai Shi, Zhijing Yang, Xiaojun Yang, Haoyu Zhong, Xin Li, Xin Jin, Yaojun Wu, Yingxue Pang, Sen Liu, Zhi-Song Liu, Li-Wen Wang, Chu-Tak Li, Marie-Paule Cani, Wan-Chi Siu, Yuanbo Zhou, Rao Muhammad Umer, Christian Micheloni, Xiaofeng Cong, Rajat Gupta, Keon-Hee Ahn, Jun-Hyuk Kim, Jun-Ho Choi, Jong-Seok Lee, Feras Almasri, Thomas Vandamme, Olivier Debeir
This paper introduces the real image Super-Resolution (SR) challenge that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2020.
1 code implementation • ECCV 2020 • Pengxu Wei, Ziwei Xie, Hannan Lu, Zongyuan Zhan, Qixiang Ye, WangMeng Zuo, Liang Lin
Learning an SR model with conventional pixel-wise loss usually is easily dominated by flat regions and edges, and fails to infer realistic details of complex textures.
no code implementations • 31 Oct 2019 • Yang Wu, Xu Cai, Pengxu Wei, Guanbin Li, Liang Lin
Compared with Generative Adversarial Networks (GAN), Energy-Based generative Models (EBMs) possess two appealing properties: i) they can be directly optimized without requiring an auxiliary network during the learning and synthesizing; ii) they can better approximate underlying distribution of the observed data by learning explicitly potential functions.
1 code implementation • CVPR 2018 • Fang Wan, Pengxu Wei, Zhenjun Han, Jianbin Jiao, Qixiang Ye
Weakly supervised object detection is a challenging task when provided with image category supervision but required to learn, at the same time, object locations and object detectors.
Ranked #14 on
Weakly Supervised Object Detection
on PASCAL VOC 2007
2 code implementations • arXiv.org 2019 • Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, Pengxu Wei
Driven by recent computer vision and robotic applications, recovering 3D human poses has become increasingly important and attracted growing interests.