no code implementations • 21 Oct 2022 • Jun Wang, Weixun Li, Changyu Hou, Xin Tang, Yixuan Qiao, Rui Fang, Pengyong Li, Peng Gao, Guotong Xie
Contrastive learning has emerged as a powerful tool for graph representation learning.
1 code implementation • Nature Machine Intelligence 2022 • Yuquan Li, Chang-Yu Hsieh, Ruiqiang Lu, Xiaoqing Gong, Xiaorui Wang, Pengyong Li, Shuo Liu, Yanan Tian, Dejun Jiang, Jiaxian Yan, Qifeng Bai, Huanxiang Liu, Shengyu Zhang, Xiaojun Yao
In fact, the pursuit of high prediction performance on a limited number of datasets has crystallized their architectures and hyperparameters, making them lose advantage in repurposing to new data generated in drug discovery.
Ranked #1 on Drug Discovery on ToxCast (Toxicity Forecaster)
no code implementations • 2 Mar 2022 • Xianbin Ye, Ziliang Li, Fei Ma, Zongbi Yi, Pengyong Li, Jun Wang, Peng Gao, Yixuan Qiao, Guotong Xie
Anti-cancer drug discoveries have been serendipitous, we sought to present the Open Molecular Graph Learning Benchmark, named CandidateDrug4Cancer, a challenging and realistic benchmark dataset to facilitate scalable, robust, and reproducible graph machine learning research for anti-cancer drug discovery.
no code implementations • 26 Oct 2021 • Pengyong Li, Jun Wang, Ziliang Li, Yixuan Qiao, Xianggen Liu, Fei Ma, Peng Gao, Seng Song, Guotong Xie
Self-supervised learning has gradually emerged as a powerful technique for graph representation learning.
no code implementations • 1 Oct 2021 • Xianggen Liu, Pengyong Li, Fandong Meng, Hao Zhou, Huasong Zhong, Jie zhou, Lili Mou, Sen Song
The key idea is to integrate powerful neural networks into metaheuristics (e. g., simulated annealing, SA) to restrict the search space in discrete optimization.
1 code implementation • Briefings in Bioinformatics 2021 • Pengyong Li, Jun Wang, Yixuan Qiao, Hao Chen, Yihuan Yu, Xiaojun Yao, Peng Gao, Guotong Xie, Sen Song
In MPG, we proposed a powerful GNN for modelling molecular graph named MolGNet, and designed an effective self-supervised strategy for pre-training the model at both the node and graph-level.
no code implementations • 21 Dec 2020 • Pengyong Li, Jun Wang, Yixuan Qiao, Hao Chen, Yihuan Yu, Xiaojun Yao, Peng Gao, Guotong Xie, Sen Song
Here, we proposed a novel Molecular Pre-training Graph-based deep learning framework, named MPG, that leans molecular representations from large-scale unlabeled molecules.
1 code implementation • 4 Nov 2020 • Pengyong Li, Yuquan Li, Chang-Yu Hsieh, Shengyu Zhang, Xianggen Liu, Huanxiang Liu, Sen Song, Xiaojun Yao
These advantages have established TrimNet as a powerful and useful computational tool in solving the challenging problem of molecular representation learning.
Ranked #1 on Drug Discovery on MUV