no code implementations • 11 Apr 2022 • Danilo Numeroso, Davide Bacciu, Petar Veličković
At training time, we exploit multi-task learning to learn jointly the Dijkstra's algorithm and a consistent heuristic function for the A* search algorithm.
no code implementations • 29 Mar 2022 • Andrew Dudzik, Petar Veličković
Recent advances in neural algorithmic reasoning with graph neural networks (GNNs) are propped up by the notion of algorithmic alignment.
no code implementations • 22 Feb 2022 • Petar Veličković
The message passing framework is the foundation of the immense success enjoyed by graph neural networks (GNNs) in recent years.
no code implementations • NeurIPS 2021 • Andreea Deac, Petar Veličković, Ognjen Milinković, Pierre-Luc Bacon, Jian Tang, Mladen Nikolić
We find that prior approaches either assume that the environment is provided in such a tabular form -- which is highly restrictive -- or infer "local neighbourhoods" of states to run value iteration over -- for which we discover an algorithmic bottleneck effect.
no code implementations • ICLR 2022 • Jonathan Godwin, Michael Schaarschmidt, Alexander L Gaunt, Alvaro Sanchez-Gonzalez, Yulia Rubanova, Petar Veličković, James Kirkpatrick, Peter Battaglia
We introduce “Noisy Nodes”, a very simple technique for improved training of GNNs, in which we corrupt the input graph with noise, and add a noise correcting node-level loss.
1 code implementation • NeurIPS 2021 • Gabriele Corso, Rex Ying, Michal Pándy, Petar Veličković, Jure Leskovec, Pietro Liò
The development of data-dependent heuristics and representations for biological sequences that reflect their evolutionary distance is critical for large-scale biological research.
no code implementations • 9 Sep 2021 • Matej Zečević, Devendra Singh Dhami, Petar Veličković, Kristian Kersting
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations.
no code implementations • 25 Aug 2021 • Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, Peter W. Battaglia, Vishal Gupta, Ang Li, Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia Li, Petar Veličković
Travel-time prediction constitutes a task of high importance in transportation networks, with web mapping services like Google Maps regularly serving vast quantities of travel time queries from users and enterprises alike.
1 code implementation • 20 Jul 2021 • Ravichandra Addanki, Peter W. Battaglia, David Budden, Andreea Deac, Jonathan Godwin, Thomas Keck, Wai Lok Sibon Li, Alvaro Sanchez-Gonzalez, Jacklynn Stott, Shantanu Thakoor, Petar Veličković
In doing so, we demonstrate evidence of scalable self-supervised graph representation learning, and utility of very deep GNNs -- both very important open issues.
no code implementations • 19 Jul 2021 • Petar Veličković, Matko Bošnjak, Thomas Kipf, Alexander Lerchner, Raia Hadsell, Razvan Pascanu, Charles Blundell
Neural networks leverage robust internal representations in order to generalise.
no code implementations • 15 Jul 2021 • Dobrik Georgiev, Pietro Barbiero, Dmitry Kazhdan, Petar Veličković, Pietro Liò
Recent research on graph neural network (GNN) models successfully applied GNNs to classical graph algorithms and combinatorial optimisation problems.
1 code implementation • 15 Jun 2021 • Jonathan Godwin, Michael Schaarschmidt, Alexander Gaunt, Alvaro Sanchez-Gonzalez, Yulia Rubanova, Petar Veličković, James Kirkpatrick, Peter Battaglia
From this observation we derive "Noisy Nodes", a simple technique in which we corrupt the input graph with noise, and add a noise correcting node-level loss.
no code implementations • 31 May 2021 • Alice Del Vecchio, Andreea Deac, Pietro Liò, Petar Veličković
Antibodies are proteins in the immune system which bind to antigens to detect and neutralise them.
no code implementations • 6 May 2021 • Petar Veličković, Charles Blundell
Algorithms have been fundamental to recent global technological advances and, in particular, they have been the cornerstone of technical advances in one field rapidly being applied to another.
5 code implementations • 27 Apr 2021 • Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković
The last decade has witnessed an experimental revolution in data science and machine learning, epitomised by deep learning methods.
no code implementations • ICLR Workshop GTRL 2021 • Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Remi Munos, Petar Veličković, Michal Valko
Current state-of-the-art self-supervised learning methods for graph neural networks are based on contrastive learning.
no code implementations • ICLR Workshop GTRL 2021 • Heiko Strathmann, Mohammadamin Barekatain, Charles Blundell, Petar Veličković
Graph neural networks (GNNs) are a powerful inductive bias for modelling algorithmic reasoning procedures and data structures.
no code implementations • 18 Feb 2021 • Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, Petar Veličković
Combinatorial optimization is a well-established area in operations research and computer science.
3 code implementations • ICLR 2022 • Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L. Dyer, Rémi Munos, Petar Veličković, Michal Valko
To address these challenges, we introduce Bootstrapped Graph Latents (BGRL) - a graph representation learning method that learns by predicting alternative augmentations of the input.
1 code implementation • 11 Jan 2021 • Emma Rocheteau, Catherine Tong, Petar Veličković, Nicholas Lane, Pietro Liò
Recent work on predicting patient outcomes in the Intensive Care Unit (ICU) has focused heavily on the physiological time series data, largely ignoring sparse data such as diagnoses and medications.
1 code implementation • NeurIPS Workshop LMCA 2020 • Lovro Vrček, Petar Veličković, Mile Šikić
De novo genome assembly focuses on finding connections between a vast amount of short sequences in order to reconstruct the original genome.
no code implementations • ICLR 2021 • Jessica B. Hamrick, Abram L. Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims Witherspoon, Thomas Anthony, Lars Buesing, Petar Veličković, Théophane Weber
These results indicate where and how to utilize planning in reinforcement learning settings, and highlight a number of open questions for future MBRL research.
no code implementations • 25 Oct 2020 • Andreea Deac, Petar Veličković, Ognjen Milinković, Pierre-Luc Bacon, Jian Tang, Mladen Nikolić
Value Iteration Networks (VINs) have emerged as a popular method to incorporate planning algorithms within deep reinforcement learning, enabling performance improvements on tasks requiring long-range reasoning and understanding of environment dynamics.
no code implementations • 24 Jul 2020 • Stefan Spalević, Petar Veličković, Jovana Kovačević, Mladen Nikolić
Protein function prediction may be framed as predicting subgraphs (with certain closure properties) of a directed acyclic graph describing the hierarchy of protein functions.
no code implementations • NeurIPS 2020 • Petar Veličković, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, Charles Blundell
This static input structure is often informed purely by insight of the machine learning practitioner, and might not be optimal for the actual task the GNN is solving.
6 code implementations • NeurIPS 2020 • Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, Petar Veličković
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data.
Ranked #3 on
Graph Classification
on CIFAR10 100k
1 code implementation • 12 Dec 2019 • Carlos Purves, Cătălina Cangea, Petar Veličković
We propose a new benchmark environment for evaluating Reinforcement Learning (RL) algorithms: the PlayStation Learning Environment (PSXLE), a PlayStation emulator modified to expose a simple control API that enables rich game-state representations.
no code implementations • ICLR 2020 • Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, Charles Blundell
Graph Neural Networks (GNNs) are a powerful representational tool for solving problems on graph-structured inputs.
1 code implementation • 2 May 2019 • Andreea Deac, Yu-Hsiang Huang, Petar Veličković, Pietro Liò, Jian Tang
Complex or co-existing diseases are commonly treated using drug combinations, which can lead to higher risk of adverse side effects.
no code implementations • 12 Apr 2019 • Felix L. Opolka, Aaron Solomon, Cătălina Cangea, Petar Veličković, Pietro Liò, R. Devon Hjelm
Spatio-temporal graphs such as traffic networks or gene regulatory systems present challenges for the existing deep learning methods due to the complexity of structural changes over time.
no code implementations • 12 Jan 2019 • Alexander G. Rakowski, Petar Veličković, Enrico Dall'Ara, Pietro Liò
ChronoMID builds on the success of cross-modal convolutional neural networks (X-CNNs), making the novel application of the technique to medical imaging data.
1 code implementation • 3 Nov 2018 • Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, Pietro Liò
Recent advances in representation learning on graphs, mainly leveraging graph convolutional networks, have brought a substantial improvement on many graph-based benchmark tasks.
11 code implementations • ICLR 2019 • Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R. Devon Hjelm
We present Deep Graph Infomax (DGI), a general approach for learning node representations within graph-structured data in an unsupervised manner.
Ranked #43 on
Node Classification
on Citeseer
no code implementations • 12 Jun 2018 • Andreea Deac, Petar Veličković, Pietro Sormanni
Antibodies are a critical part of the immune system, having the function of directly neutralising or tagging undesirable objects (the antigens) for future destruction.
1 code implementation • 2 May 2018 • Laurynas Karazija, Petar Veličković, Pietro Liò
The base approach learns the topology in a data-driven manner, by using measurements performed on the base CNN and supplied data.
1 code implementation • 24 Nov 2017 • Momchil Peychev, Petar Veličković, Pietro Liò
In this paper we quantify the effects of the parameter $\beta$ on the model performance and disentanglement.
73 code implementations • ICLR 2018 • Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio
We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations.
Ranked #1 on
Node Property Prediction
on ogbn-proteins
no code implementations • 23 Sep 2017 • Petar Veličković, Laurynas Karazija, Nicholas D. Lane, Sourav Bhattacharya, Edgar Liberis, Pietro Liò, Angela Chieh, Otmane Bellahsen, Matthieu Vegreville
We analyse multimodal time-series data corresponding to weight, sleep and steps measurements.
1 code implementation • 2 Sep 2017 • Cătălina Cangea, Petar Veličković, Pietro Liò
Our work improves on existing multimodal deep learning algorithms in two essential ways: (1) it presents a novel method for performing cross-modality (before features are learned from individual modalities) and (2) extends the previously proposed cross-connections which only transfer information between streams that process compatible data.
no code implementations • 1 Oct 2016 • Petar Veličković, Duo Wang, Nicholas D. Lane, Pietro Liò
In this paper we propose cross-modal convolutional neural networks (X-CNNs), a novel biologically inspired type of CNN architectures, treating gradient descent-specialised CNNs as individual units of processing in a larger-scale network topology, while allowing for unconstrained information flow and/or weight sharing between analogous hidden layers of the network---thus generalising the already well-established concept of neural network ensembles (where information typically may flow only between the output layers of the individual networks).