Search Results for author: Pete Florence

Found 4 papers, 3 papers with code

Implicit Behavioral Cloning

1 code implementation1 Sep 2021 Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong, Johnny Lee, Igor Mordatch, Jonathan Tompson

We find that across a wide range of robot policy learning scenarios, treating supervised policy learning with an implicit model generally performs better, on average, than commonly used explicit models.

XIRL: Cross-embodiment Inverse Reinforcement Learning

1 code implementation7 Jun 2021 Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, Debidatta Dwibedi

We investigate the visual cross-embodiment imitation setting, in which agents learn policies from videos of other agents (such as humans) demonstrating the same task, but with stark differences in their embodiments -- shape, actions, end-effector dynamics, etc.

INeRF: Inverting Neural Radiance Fields for Pose Estimation

1 code implementation10 Dec 2020 Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto Rodriguez, Phillip Isola, Tsung-Yi Lin

We then show that for complex real-world scenes from the LLFF dataset, iNeRF can improve NeRF by estimating the camera poses of novel images and using these images as additional training data for NeRF.

Pose Estimation

Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks

no code implementations6 Dec 2020 Daniel Seita, Pete Florence, Jonathan Tompson, Erwin Coumans, Vikas Sindhwani, Ken Goldberg, Andy Zeng

Goals cannot be as easily specified as rigid object poses, and may involve complex relative spatial relations such as "place the item inside the bag".

Cannot find the paper you are looking for? You can Submit a new open access paper.