1 code implementation • 21 Oct 2024 • Nat Jeffries, Evan King, Manjunath Kudlur, Guy Nicholson, James Wang, Pete Warden
This paper introduces Moonshine, a family of speech recognition models optimized for live transcription and voice command processing.
no code implementations • 1 May 2024 • Colby Banbury, Emil Njor, Andrea Mattia Garavagno, Matthew Stewart, Pete Warden, Manjunath Kudlur, Nat Jeffries, Xenofon Fafoutis, Vijay Janapa Reddi
Training with Wake Vision improves accuracy by 1. 93% over existing datasets, demonstrating the importance of dataset quality for low-capacity models and dataset size for high-capacity models.
no code implementations • 15 Jun 2023 • Matthew Stewart, Pete Warden, Yasmine Omri, Shvetank Prakash, Joao Santos, Shawn Hymel, Benjamin Brown, Jim MacArthur, Nat Jeffries, Sachin Katti, Brian Plancher, Vijay Janapa Reddi
Machine learning (ML) sensors are enabling intelligence at the edge by empowering end-users with greater control over their data.
no code implementations • 27 Jan 2023 • Shvetank Prakash, Matthew Stewart, Colby Banbury, Mark Mazumder, Pete Warden, Brian Plancher, Vijay Janapa Reddi
This article discusses both the potential of these TinyML applications to address critical sustainability challenges, as well as the environmental footprint of this emerging technology.
1 code implementation • 7 Jun 2022 • Pete Warden, Matthew Stewart, Brian Plancher, Colby Banbury, Shvetank Prakash, Emma Chen, Zain Asgar, Sachin Katti, Vijay Janapa Reddi
Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications.
no code implementations • 5 Jan 2022 • Shvetank Prakash, Tim Callahan, Joseph Bushagour, Colby Banbury, Alan V. Green, Pete Warden, Tim Ansell, Vijay Janapa Reddi
In this paper, we present CFU Playground: a full-stack open-source framework that enables rapid and iterative design and evaluation of machine learning (ML) accelerators for embedded ML systems.
no code implementations • 8 Nov 2021 • Hang Qiu, Ioanna Vavelidou, Jian Li, Evgenya Pergament, Pete Warden, Sandeep Chinchali, Zain Asgar, Sachin Katti
The key challenge is that there is not much visibility into ML inference execution on edge devices, and very little awareness of potential issues during the edge deployment process.
1 code implementation • 7 Jun 2021 • Vijay Janapa Reddi, Brian Plancher, Susan Kennedy, Laurence Moroney, Pete Warden, Anant Agarwal, Colby Banbury, Massimo Banzi, Matthew Bennett, Benjamin Brown, Sharad Chitlangia, Radhika Ghosal, Sarah Grafman, Rupert Jaeger, Srivatsan Krishnan, Maximilian Lam, Daniel Leiker, Cara Mann, Mark Mazumder, Dominic Pajak, Dhilan Ramaprasad, J. Evan Smith, Matthew Stewart, Dustin Tingley
Broadening access to both computational and educational resources is critical to diffusing machine-learning (ML) innovation.
2 code implementations • 3 Apr 2021 • Mark Mazumder, Colby Banbury, Josh Meyer, Pete Warden, Vijay Janapa Reddi
With just five training examples, we fine-tune the embedding model for keyword spotting and achieve an average F1 score of 0. 75 on keyword classification for 180 new keywords unseen by the embedding model in these nine languages.
no code implementations • 23 Feb 2021 • Vijay Janapa Reddi, Greg Diamos, Pete Warden, Peter Mattson, David Kanter
This article shows that open-source data sets are the rocket fuel for research and innovation at even some of the largest AI organizations.
2 code implementations • 17 Oct 2020 • Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li, Nick Kreeger, Ian Nappier, Meghna Natraj, Shlomi Regev, Rocky Rhodes, Tiezhen Wang, Pete Warden
We introduce TensorFlow Lite Micro (TF Micro), an open-source ML inference framework for running deep-learning models on embedded systems.
5 code implementations • 12 Jun 2019 • Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, Rocky Rhodes
To facilitate the development of microcontroller friendly models, we present a new dataset, Visual Wake Words, that represents a common microcontroller vision use-case of identifying whether a person is present in the image or not, and provides a realistic benchmark for tiny vision models.
32 code implementations • 9 Apr 2018 • Pete Warden
Describes an audio dataset of spoken words designed to help train and evaluate keyword spotting systems.
Ranked #1 on
Keyword Spotting
on TensorFlow
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
2 code implementations • 27 May 2016 • Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, Xiaoqiang Zheng
TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments.
4 code implementations • 14 Mar 2016 • Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, Xiaoqiang Zheng
TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms.