Search Results for author: Phiala E. Shanahan

Found 15 papers, 1 papers with code

Equivariant flow-based sampling for lattice gauge theory

no code implementations13 Mar 2020 Gurtej Kanwar, Michael S. Albergo, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Sébastien Racanière, Danilo Jimenez Rezende, Phiala E. Shanahan

We define a class of machine-learned flow-based sampling algorithms for lattice gauge theories that are gauge-invariant by construction.

Sampling using $SU(N)$ gauge equivariant flows

no code implementations12 Aug 2020 Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S. Albergo, Kyle Cranmer, Daniel C. Hackett, Phiala E. Shanahan

We develop a flow-based sampling algorithm for $SU(N)$ lattice gauge theories that is gauge-invariant by construction.

Introduction to Normalizing Flows for Lattice Field Theory

no code implementations20 Jan 2021 Michael S. Albergo, Denis Boyda, Daniel C. Hackett, Gurtej Kanwar, Kyle Cranmer, Sébastien Racanière, Danilo Jimenez Rezende, Phiala E. Shanahan

This notebook tutorial demonstrates a method for sampling Boltzmann distributions of lattice field theories using a class of machine learning models known as normalizing flows.

BIG-bench Machine Learning

Flow-based sampling for fermionic lattice field theories

no code implementations10 Jun 2021 Michael S. Albergo, Gurtej Kanwar, Sébastien Racanière, Danilo J. Rezende, Julian M. Urban, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Phiala E. Shanahan

Algorithms based on normalizing flows are emerging as promising machine learning approaches to sampling complicated probability distributions in a way that can be made asymptotically exact.

Flow-based sampling for multimodal distributions in lattice field theory

no code implementations1 Jul 2021 Daniel C. Hackett, Chung-Chun Hsieh, Michael S. Albergo, Denis Boyda, Jiunn-Wei Chen, Kai-Feng Chen, Kyle Cranmer, Gurtej Kanwar, Phiala E. Shanahan

Recent results have demonstrated that samplers constructed with flow-based generative models are a promising new approach for configuration generation in lattice field theory.

Applications of Machine Learning to Lattice Quantum Field Theory

no code implementations10 Feb 2022 Denis Boyda, Salvatore Calì, Sam Foreman, Lena Funcke, Daniel C. Hackett, Yin Lin, Gert Aarts, Andrei Alexandru, Xiao-Yong Jin, Biagio Lucini, Phiala E. Shanahan

There is great potential to apply machine learning in the area of numerical lattice quantum field theory, but full exploitation of that potential will require new strategies.

BIG-bench Machine Learning

Flow-based sampling in the lattice Schwinger model at criticality

no code implementations23 Feb 2022 Michael S. Albergo, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Gurtej Kanwar, Sébastien Racanière, Danilo J. Rezende, Fernando Romero-López, Phiala E. Shanahan, Julian M. Urban

In this work, we provide a numerical demonstration of robust flow-based sampling in the Schwinger model at the critical value of the fermion mass.

Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions

no code implementations18 Jul 2022 Ryan Abbott, Michael S. Albergo, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Gurtej Kanwar, Sébastien Racanière, Danilo J. Rezende, Fernando Romero-López, Phiala E. Shanahan, Betsy Tian, Julian M. Urban

This work presents gauge-equivariant architectures for flow-based sampling in fermionic lattice field theories using pseudofermions as stochastic estimators for the fermionic determinant.

Neural-network preconditioners for solving the Dirac equation in lattice gauge theory

no code implementations4 Aug 2022 Salvatore Calì, Daniel C. Hackett, Yin Lin, Phiala E. Shanahan, Brian Xiao

This work develops neural-network--based preconditioners to accelerate solution of the Wilson-Dirac normal equation in lattice quantum field theories.

Aspects of scaling and scalability for flow-based sampling of lattice QCD

no code implementations14 Nov 2022 Ryan Abbott, Michael S. Albergo, Aleksandar Botev, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Alexander G. D. G. Matthews, Sébastien Racanière, Ali Razavi, Danilo J. Rezende, Fernando Romero-López, Phiala E. Shanahan, Julian M. Urban

Recent applications of machine-learned normalizing flows to sampling in lattice field theory suggest that such methods may be able to mitigate critical slowing down and topological freezing.

Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics

no code implementations3 Sep 2023 Kyle Cranmer, Gurtej Kanwar, Sébastien Racanière, Danilo J. Rezende, Phiala E. Shanahan

This Perspective outlines the advances in ML-based sampling motivated by lattice quantum field theory, in particular for the theory of quantum chromodynamics.

Audio Generation

Applications of flow models to the generation of correlated lattice QCD ensembles

no code implementations19 Jan 2024 Ryan Abbott, Aleksandar Botev, Denis Boyda, Daniel C. Hackett, Gurtej Kanwar, Sébastien Racanière, Danilo J. Rezende, Fernando Romero-López, Phiala E. Shanahan, Julian M. Urban

Machine-learned normalizing flows can be used in the context of lattice quantum field theory to generate statistically correlated ensembles of lattice gauge fields at different action parameters.

Practical applications of machine-learned flows on gauge fields

no code implementations17 Apr 2024 Ryan Abbott, Michael S. Albergo, Denis Boyda, Daniel C. Hackett, Gurtej Kanwar, Fernando Romero-López, Phiala E. Shanahan, Julian M. Urban

Normalizing flows are machine-learned maps between different lattice theories which can be used as components in exact sampling and inference schemes.

Cannot find the paper you are looking for? You can Submit a new open access paper.