1 code implementation • 9 Apr 2024 • Seunghoi Kim, Chen Jin, Tom Diethe, Matteo Figini, Henry F. J. Tregidgo, Asher Mullokandov, Philip Teare, Daniel C. Alexander
We hypothesize such hallucinations result from local OOD regions in the conditional images.
2 code implementations • 18 Oct 2023 • Chen Jin, Ryutaro Tanno, Amrutha Saseendran, Tom Diethe, Philip Teare
Textural Inversion, a prompt learning method, learns a singular text embedding for a new "word" to represent image style and appearance, allowing it to be integrated into natural language sentences to generate novel synthesised images.
no code implementations • 21 Sep 2023 • Sylwia Majchrowska, Anders Hildeman, Philip Teare, Tom Diethe
Supervised training of deep learning models for medical imaging applications requires a significant amount of labeled data.
no code implementations • 16 Jun 2022 • Tolou Shadbahr, Michael Roberts, Jan Stanczuk, Julian Gilbey, Philip Teare, Sören Dittmer, Matthew Thorpe, Ramon Vinas Torne, Evis Sala, Pietro Lio, Mishal Patel, AIX-COVNET Collaboration, James H. F. Rudd, Tuomas Mirtti, Antti Rannikko, John A. D. Aston, Jing Tang, Carola-Bibiane Schönlieb
Classifying samples in incomplete datasets is a common aim for machine learning practitioners, but is non-trivial.