1 code implementation • 1 Oct 2024 • Víctor Sabanza-Gil, Riccardo Barbano, Daniel Pacheco Gutiérrez, Jeremy S. Luterbacher, José Miguel Hernández-Lobato, Philippe Schwaller, Loïc Roch
First, we test two different families of acquisition functions in two synthetic problems and study the effect of the informativeness and cost of the approximate function.
no code implementations • 7 Aug 2024 • Beatriz Borges, Negar Foroutan, Deniz Bayazit, Anna Sotnikova, Syrielle Montariol, Tanya Nazaretzky, Mohammadreza Banaei, Alireza Sakhaeirad, Philippe Servant, Seyed Parsa Neshaei, Jibril Frej, Angelika Romanou, Gail Weiss, Sepideh Mamooler, Zeming Chen, Simin Fan, Silin Gao, Mete Ismayilzada, Debjit Paul, Alexandre Schöpfer, Andrej Janchevski, Anja Tiede, Clarence Linden, Emanuele Troiani, Francesco Salvi, Freya Behrens, Giacomo Orsi, Giovanni Piccioli, Hadrien Sevel, Louis Coulon, Manuela Pineros-Rodriguez, Marin Bonnassies, Pierre Hellich, Puck van Gerwen, Sankalp Gambhir, Solal Pirelli, Thomas Blanchard, Timothée Callens, Toni Abi Aoun, Yannick Calvino Alonso, Yuri Cho, Alberto Chiappa, Antonio Sclocchi, Étienne Bruno, Florian Hofhammer, Gabriel Pescia, Geovani Rizk, Leello Dadi, Lucas Stoffl, Manoel Horta Ribeiro, Matthieu Bovel, Yueyang Pan, Aleksandra Radenovic, Alexandre Alahi, Alexander Mathis, Anne-Florence Bitbol, Boi Faltings, Cécile Hébert, Devis Tuia, François Maréchal, George Candea, Giuseppe Carleo, Jean-Cédric Chappelier, Nicolas Flammarion, Jean-Marie Fürbringer, Jean-Philippe Pellet, Karl Aberer, Lenka Zdeborová, Marcel Salathé, Martin Jaggi, Martin Rajman, Mathias Payer, Matthieu Wyart, Michael Gastpar, Michele Ceriotti, Ola Svensson, Olivier Lévêque, Paolo Ienne, Rachid Guerraoui, Robert West, Sanidhya Kashyap, Valerio Piazza, Viesturs Simanis, Viktor Kuncak, Volkan Cevher, Philippe Schwaller, Sacha Friedli, Patrick Jermann, Tanja Kaser, Antoine Bosselut
We investigate the potential scale of this vulnerability by measuring the degree to which AI assistants can complete assessment questions in standard university-level STEM courses.
1 code implementation • 16 Jul 2024 • Jeff Guo, Philippe Schwaller
Synthesizability in generative molecular design remains a pressing challenge.
no code implementations • 29 May 2024 • Paulo Neves, Joerg K. Wegner, Philippe Schwaller
This framework entails an additional step in machine learning training, where gradients can be included or excluded from backpropagation.
2 code implementations • 27 May 2024 • Jeff Guo, Philippe Schwaller
Saturn outperforms 22 models on multi-parameter optimization tasks relevant to drug discovery and may possess sufficient sample efficiency to consider the prospect of directly optimizing high-fidelity oracles.
1 code implementation • 1 Apr 2024 • Adrian Mirza, Nawaf Alampara, Sreekanth Kunchapu, Benedict Emoekabu, Aswanth Krishnan, Mara Wilhelmi, Macjonathan Okereke, Juliane Eberhardt, Amir Mohammad Elahi, Maximilian Greiner, Caroline T. Holick, Tanya Gupta, Mehrdad Asgari, Christina Glaubitz, Lea C. Klepsch, Yannik Köster, Jakob Meyer, Santiago Miret, Tim Hoffmann, Fabian Alexander Kreth, Michael Ringleb, Nicole Roesner, Ulrich S. Schubert, Leanne M. Stafast, Dinga Wonanke, Michael Pieler, Philippe Schwaller, Kevin Maik Jablonka
Large language models (LLMs) have gained widespread interest due to their ability to process human language and perform tasks on which they have not been explicitly trained.
1 code implementation • 20 Dec 2023 • Junwu Chen, Philippe Schwaller
To tackle this challenge, we introduce molecular hypergraphs and propose Molecular Hypergraph Neural Networks (MHNN) to predict the optoelectronic properties of organic semiconductors, where hyperedges represent conjugated structures.
no code implementations • 20 Dec 2023 • Rebecca M. Neeser, Bruno Correia, Philippe Schwaller
The FSscore showcases how human expert feedback can be utilized to optimize the assessment of synthetic feasibility for a variety of applications.
1 code implementation • 14 Dec 2023 • Victor Sabanza Gil, Andres M. Bran, Malte Franke, Remi Schlama, Jeremy S. Luterbacher, Philippe Schwaller
The prediction of chemical reactions has gained significant interest within the machine learning community in recent years, owing to its complexity and crucial applications in chemistry.
1 code implementation • 7 Nov 2023 • Geemi P. Wellawatte, Philippe Schwaller
Explainable Artificial Intelligence (XAI) is an emerging field in AI that aims to address the opaque nature of machine learning models.
Explainable artificial intelligence Explainable Artificial Intelligence (XAI)
1 code implementation • 9 Oct 2023 • Stéphane d'Ascoli, Sören Becker, Alexander Mathis, Philippe Schwaller, Niki Kilbertus
We introduce ODEFormer, the first transformer able to infer multidimensional ordinary differential equation (ODE) systems in symbolic form from the observation of a single solution trajectory.
no code implementations • 9 Oct 2023 • Andres M Bran, Philippe Schwaller
Language modeling has seen impressive progress over the last years, mainly prompted by the invention of the Transformer architecture, sparking a revolution in many fields of machine learning, with breakthroughs in chemistry and biology.
3 code implementations • 25 Sep 2023 • Jeff Guo, Philippe Schwaller
Generative molecular design has moved from proof-of-concept to real-world applicability, as marked by the surge in very recent papers reporting experimental validation.
2 code implementations • 9 Jun 2023 • Kevin Maik Jablonka, Qianxiang Ai, Alexander Al-Feghali, Shruti Badhwar, Joshua D. Bocarsly, Andres M Bran, Stefan Bringuier, L. Catherine Brinson, Kamal Choudhary, Defne Circi, Sam Cox, Wibe A. de Jong, Matthew L. Evans, Nicolas Gastellu, Jerome Genzling, María Victoria Gil, Ankur K. Gupta, Zhi Hong, Alishba Imran, Sabine Kruschwitz, Anne Labarre, Jakub Lála, Tao Liu, Steven Ma, Sauradeep Majumdar, Garrett W. Merz, Nicolas Moitessier, Elias Moubarak, Beatriz Mouriño, Brenden Pelkie, Michael Pieler, Mayk Caldas Ramos, Bojana Ranković, Samuel G. Rodriques, Jacob N. Sanders, Philippe Schwaller, Marcus Schwarting, Jiale Shi, Berend Smit, Ben E. Smith, Joren Van Herck, Christoph Völker, Logan Ward, Sean Warren, Benjamin Weiser, Sylvester Zhang, Xiaoqi Zhang, Ghezal Ahmad Zia, Aristana Scourtas, KJ Schmidt, Ian Foster, Andrew D. White, Ben Blaiszik
Recent studies suggested that these models could be useful in chemistry and materials science.
no code implementations • 10 May 2023 • Jeff Guo, Philippe Schwaller
Molecular generative models have shown remarkable sample efficiency when coupled with reinforcement learning, as demonstrated in the Practical Molecular Optimization (PMO) benchmark.
2 code implementations • 11 Apr 2023 • Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, Philippe Schwaller
Our agent autonomously planned and executed the syntheses of an insect repellent, three organocatalysts, and guided the discovery of a novel chromophore.
1 code implementation • NeurIPS 2023 • Ryan-Rhys Griffiths, Leo Klarner, Henry B. Moss, Aditya Ravuri, Sang Truong, Samuel Stanton, Gary Tom, Bojana Rankovic, Yuanqi Du, Arian Jamasb, Aryan Deshwal, Julius Schwartz, Austin Tripp, Gregory Kell, Simon Frieder, Anthony Bourached, Alex Chan, Jacob Moss, Chengzhi Guo, Johannes Durholt, Saudamini Chaurasia, Felix Strieth-Kalthoff, Alpha A. Lee, Bingqing Cheng, Alán Aspuru-Guzik, Philippe Schwaller, Jian Tang
By defining such kernels in GAUCHE, we seek to open the door to powerful tools for uncertainty quantification and Bayesian optimisation in chemistry.
1 code implementation • 31 Mar 2022 • Mario Krenn, Qianxiang Ai, Senja Barthel, Nessa Carson, Angelo Frei, Nathan C. Frey, Pascal Friederich, Théophile Gaudin, Alberto Alexander Gayle, Kevin Maik Jablonka, Rafael F. Lameiro, Dominik Lemm, Alston Lo, Seyed Mohamad Moosavi, José Manuel Nápoles-Duarte, AkshatKumar Nigam, Robert Pollice, Kohulan Rajan, Ulrich Schatzschneider, Philippe Schwaller, Marta Skreta, Berend Smit, Felix Strieth-Kalthoff, Chong Sun, Gary Tom, Guido Falk von Rudorff, Andrew Wang, Andrew White, Adamo Young, Rose Yu, Alán Aspuru-Guzik
We hope that these proposals will inspire several follow-up works exploiting the full potential of molecular string representations for the future of AI in chemistry and materials science.
no code implementations • NeurIPS Workshop AI4Scien 2021 • Loïc Kwate Dassi, Matteo Manica, Daniel Probst, Philippe Schwaller, Yves Gaetan Nana Teukam, Teodoro Laino
Herein, we apply a Transformer architecture to a language representation of bio-catalyzed chemical reactions to learn the signal at the base of the substrate-active site atomic interactions.
no code implementations • NeurIPS Workshop AI4Scien 2021 • Andrea Byekwaso, Philippe Schwaller, Alain C. Vaucher, Alessandra Toniato, Teodoro Laino
In this work, we design an approach to provide this option by adapting a transformer-based model for single-step retrosynthesis.
no code implementations • 6 May 2021 • Ryan-Rhys Griffiths, Philippe Schwaller, Alpha A. Lee
Datasets in the Natural Sciences are often curated with the goal of aiding scientific understanding and hence may not always be in a form that facilitates the application of machine learning.
1 code implementation • 2 Feb 2021 • Alessandra Toniato, Philippe Schwaller, Antonio Cardinale, Joppe Geluykens, Teodoro Laino
Existing deep learning models applied to reaction prediction in organic chemistry can reach high levels of accuracy (> 90% for Natural Language Processing-based ones).
1 code implementation • 9 Dec 2020 • Philippe Schwaller, Daniel Probst, Alain C. Vaucher, Vishnu H. Nair, David Kreutter, Teodoro Laino, Jean-Louis Reymond
Organic reactions are usually assigned to classes containing reactions with similar reagents and mechanisms.
no code implementations • 10 Feb 2020 • Hakime Öztürk, Arzucan Özgür, Philippe Schwaller, Teodoro Laino, Elif Ozkirimli
Text-based representations of chemicals and proteins can be thought of as unstructured languages codified by humans to describe domain-specific knowledge.
no code implementations • 17 Oct 2019 • Philippe Schwaller, Riccardo Petraglia, Valerio Zullo, Vishnu H Nair, Rico Andreas Haeuselmann, Riccardo Pisoni, Costas Bekas, Anna Iuliano, Teodoro Laino
We present an extension of our Molecular Transformer architecture combined with a hyper-graph exploration strategy for automatic retrosynthesis route planning without human intervention.
1 code implementation • 6 Nov 2018 • Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Costas Bekas, Alpha A. Lee
Organic synthesis is one of the key stumbling blocks in medicinal chemistry.
1 code implementation • 13 Nov 2017 • Philippe Schwaller, Theophile Gaudin, David Lanyi, Costas Bekas, Teodoro Laino
With this approach, we demonstrate results superior to the state-of-the-art solution by a significant margin on the top-1 accuracy.