no code implementations • 24 Jun 2024 • Pierangela Bruno, Edoardo De Rose, Carlo Adornetto, Francesco Calimeri, Sandro Donato, Raffaele Giuseppe Agostino, Daniela Amelio, Riccardo Barberi, Maria Carmela Cerra, Maria Caterina Crocco, Mariacristina Filice, Raffaele Filosa, Gianluigi Greco, Sandra Imbrogno, Vincenzo Formoso
X-ray computed microtomography ({\mu}-CT) is a non-destructive technique that can generate high-resolution 3D images of the internal anatomy of medical and biological samples.
no code implementations • 22 Oct 2023 • Pierangela Bruno, Francesco Calimeri, Cinzia Marte, Simona Perri
Although the availability of a large amount of data is usually given for granted, there are relevant scenarios where this is not the case; for instance, in the biomedical/healthcare domain, some applications require to build huge datasets of proper images, but the acquisition of such images is often hard for different reasons (e. g., accessibility, costs, pathology-related variability), thus causing limited and usually imbalanced datasets.
no code implementations • 17 Jun 2021 • Tobias Roß, Pierangela Bruno, Annika Reinke, Manuel Wiesenfarth, Lisa Koeppel, Peter M. Full, Bünyamin Pekdemir, Patrick Godau, Darya Trofimova, Fabian Isensee, Sara Moccia, Francesco Calimeri, Beat P. Müller-Stich, Annette Kopp-Schneider, Lena Maier-Hein
Challenges have become the state-of-the-art approach to benchmark image analysis algorithms in a comparative manner.
no code implementations • 7 May 2020 • Lena Maier-Hein, Martin Wagner, Tobias Ross, Annika Reinke, Sebastian Bodenstedt, Peter M. Full, Hellena Hempe, Diana Mindroc-Filimon, Patrick Scholz, Thuy Nuong Tran, Pierangela Bruno, Anna Kisilenko, Benjamin Müller, Tornike Davitashvili, Manuela Capek, Minu Tizabi, Matthias Eisenmann, Tim J. Adler, Janek Gröhl, Melanie Schellenberg, Silvia Seidlitz, T. Y. Emmy Lai, Bünyamin Pekdemir, Veith Roethlingshoefer, Fabian Both, Sebastian Bittel, Marc Mengler, Lars Mündermann, Martin Apitz, Annette Kopp-Schneider, Stefanie Speidel, Hannes G. Kenngott, Beat P. Müller-Stich
Image-based tracking of medical instruments is an integral part of surgical data science applications.
no code implementations • 23 Mar 2020 • Tobias Ross, Annika Reinke, Peter M. Full, Martin Wagner, Hannes Kenngott, Martin Apitz, Hellena Hempe, Diana Mindroc Filimon, Patrick Scholz, Thuy Nuong Tran, Pierangela Bruno, Pablo Arbeláez, Gui-Bin Bian, Sebastian Bodenstedt, Jon Lindström Bolmgren, Laura Bravo-Sánchez, Hua-Bin Chen, Cristina González, Dong Guo, Pål Halvorsen, Pheng-Ann Heng, Enes Hosgor, Zeng-Guang Hou, Fabian Isensee, Debesh Jha, Tingting Jiang, Yueming Jin, Kadir Kirtac, Sabrina Kletz, Stefan Leger, Zhixuan Li, Klaus H. Maier-Hein, Zhen-Liang Ni, Michael A. Riegler, Klaus Schoeffmann, Ruohua Shi, Stefanie Speidel, Michael Stenzel, Isabell Twick, Gutai Wang, Jiacheng Wang, Liansheng Wang, Lu Wang, Yu-Jie Zhang, Yan-Jie Zhou, Lei Zhu, Manuel Wiesenfarth, Annette Kopp-Schneider, Beat P. Müller-Stich, Lena Maier-Hein
The validation of the competing methods for the three tasks (binary segmentation, multi-instance detection and multi-instance segmentation) was performed in three different stages with an increasing domain gap between the training and the test data.